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Kinetic equation for liquids with a multistep potential of interaction:
Calculation of transport coefficients
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Using the boundary conditions method, we find normal solutions to a kinetic equation proposed recently by
us @Physica A234, 89 ~1996!# to describe nonequilibrium properties of classical liquids. As a result, explicit
expressions for the transport coefficients and macroscopic conservation laws are obtained in the first order for
gradients of hydrodynamic parameters. In some particular cases, these expressions are reduced to those cor-
responding to the well-known Enskog, Davis-Rice-Sengers, and mean-field kinetic theories. It is demonstrated
that our approach allows an accurate reproduction of experimental and molecular dynamics data for the
transport coefficients of liquid argon in a wide density-temperature range.

PACS number~s!: 05.20.Dd, 05.60.2k, 05.70.Ln, 52.25.Fi
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I. INTRODUCTION

In 1872, Boltzmann has proposed a kinetic theory@1# for
the description of nonequilibrium processes in dilute ga
and proved theH-theorem. However, until now there is n
consequent kinetic approach for dense gases and liquids
a realistic interparticle potential of interaction. The deriv
tion and solution of kinetic equations for dense classical s
tems still remains an important and unresolved problem
nonequilibrium statistical mechanics.

In 1946, Bogolubov had suggested an approach@2# to the
problem of derivation of kinetic equations which allows
generalization to higher densities. Within this theory, t
Boltzmann equation corresponds to zeroth approximatio
the power series with respect to density. But, it was so
realized that the second- and higher-order terms are di
gent @3#. The reason for such a divergence can be explai
by the fact that the expansions used were based on dyna
of isolated groups of particles in an infinite space witho
taking into consideration the media, i.e., all others partic
in the system. In contrast to systems at equilibrium, the
locity correlations in a nonequilibrium state include lon
range correlations between particles. This does not allow
generalize the Boltzmann kinetic equation to high densi
within such expansions.

A successful empirical kinetic theory of dense gases w
developed by Enskog in 1922 at least for the case of h
spheres~standard Enskog theory SET! @4#. His arguments
were similar to Boltzmann’s. In 1961 Daviset al. @5# sug-
gested the Davis-Rice-Sengers~DRS! kinetic theory, where
the so-called ‘‘square-well’’ potential of interaction is co
sidered. DRS theory is an analog of the usual SET theory
a specific type of interaction potential. Here an attractive p
of real interaction potential is approximated by some fin
attractive wall. A revised Enskog theory~RET! @6–8# and a
revised version of DRS–RDRS@9# have been obtained. Th
necessity of the revised versions could be explained as
lows. ~1! Kinetic equations of the initial versions of thos
theories cannot be derived consistently.~2! The exact en-
tropy functional cannot be constructed, hence theH-theorem
PRE 621063-651X/2000/62~6!/8021~16!/$15.00
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cannot be proved. But some recipe of construction of entr
functional for the SET theory was suggested in Refs.@10–
12#. For the revised versions RET@7,8# and RDRS@9# the
exact entropy functional was constructed and theH-theorem
was proved. Furthermore, the RET kinetic equation has b
obtained successfully within the frame of some theoreti
scheme, which is analogous to Bogolubov’s@2#, but uses a
modification of boundary conditions. The last one takes i
account the local conservation laws in the solution of
BBGKY hierarchy@13#.

In order to apply the results of the SET theory to re
systems, Enskog suggested to change the hydrostatic
sure of a system of hard spheres to a thermodynamic p
sure of a real system. Having this assertion in mind, Han
et al. @14# built a kinetic theory called later the modifie
Enskog theory~MET! where the hard sphere diameters is
defined via the second virial coefficient of the system eq
tion of state. In such a way,s becomes dependent on tem
perature and density. Using different equations of state:
@15#, WCA @16#, MC/RS @17,18# and others, one obtains th
corresponding versions of MET.

In the kinetic mean-field theory~KMFT! @19#, along with
the hard sphere interaction potential one considers also s
smooth attractive ‘‘tail.’’ It is noted in Ref.@20# that in this
case the quasiequilibrium binary correlation function of ha
spheres should be replaced with one which takes into
count, explicitly or implicitly, the total interaction potentia
The main conclusion of KMFT is that the smooth part
interaction potential in the first approximation in gradients
hydrodynamic parameters does not contribute explicitly i
transport coefficients. There is only an indirect contributi
via the binary correlation function. Its dependence on te
perature is defined by a smooth part of the interaction po
tial.

In our recent paper@21# we suggested a kinetic equatio
for systems with a multistep potential of interaction~MSPI!.
This potential consists of the hard sphere part and of a
tem of attractive and repulsive walls. Such a model is a g
eralization of SET~RET, MET!, DRS ~RDRS! and KMFT
theories. We also proved theH-theorem for this equation
However, a normal solution has not been published yet
8021 ©2000 The American Physical Society
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this article, going to the schema of construction of norm
solutions of kinetic equations with the help of boundary co
ditions method@22#, a normal solution to the kinetic equatio
has been obtained and the integral conservation laws li
in gradients of hydrodynamic parameters have been deri
The expressions for such transport coefficients as bulk
shear viscosity and thermal conductivity are calculated
the case of stationary process. We also consider limi
cases for this kinetic equation. For specific parameters
model interaction potential in shape of the multistep fun
tion, the obtained results rearrange to those of the SET~RET,
MET!, DRS ~RDRS! or KMFT theories by means of th
standard Chapman-Enskog method@23#. In view of this, the
theory can be considered as a generalized one which in s
specific cases arrives at the results of previous ones an
such a way displays the connection between these theo
At the end of this article we present results of numeri
computation of transport coefficients for argon and th
comparison with the available experimental data and M
simulations.

II. MULTISTEP POTENTIAL OF INTERACTION:
KINETIC EQUATION

Let us consider a system ofN classical particles in volume
V when N→` and V→`, provided N/V5const. The
Hamiltonian of this system reads:

HN5(
i 51

N
p2

2m
1(

i , j

N

w i j . ~2.1!

Our purpose is the most detailed analysis of nonequilibri
processes in dense systems. To do this let us define M
w i j [w(urW i2rW j u)[w(urW i j u)[w(r i j ) in a form of the multi-
step function:

w i j 5H `; r i j ,s0 ,

«k ; sk21,r i j ,sk ; k51, . . . ,N* ,

0; sN* ,r i j .

~2.2!

HereN* is the total number of attractive and repulsive wa
except the hard sphere one. For our convenience we di
guish systems of attractive and repulsive walls. Let one h
n* repulsive walls, separated by the distancess l i and having
heightsD« l i , i 51, . . . ,n* ; andm* attractive walls with the
parameterss r j andD« r j , j 51, . . . ,m* , respectively,s0 is
the location of the hard sphere wall. It is obvious thatn*
1m* 5N* , D« l i 5« l i 2« l i 11 , D« r j 5« r j 112« r j . In such a
way the parameterss0 , n* , s l i , D« l i , m* , s r j , D« r j de-
fine the multistep potential of interaction completely~see
Fig. 1!.

Going similarly to the derivation of the kinetic equatio
of the RET theory@7,8,24# and taking into account the sys
tem of attractive and repulsive walls, one obtains the follo
ing kinetic equation:

S ]

]t
1vW 1

]

]rW1
D f 1~x1 ;t !5E dx2T̂f 2~x1 ,x2 ;t !, ~2.3a!

f 2~x1 ,x2 ;t !5g2
qf 1~x1 ;t ! f 1~x2 ;t !, ~2.3b!
l
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whereg2
q[g2

q
„rW1 ,rW2un(t),b(t)… is defined in the usual way

from the maximum of the entropy functional and in its turn
the functional of local values of densityn(rW1 ;t) and inverse
temperatureb(rW1 ;t)51/(kBT), kB is the Boltzmann constan
and T is the local temperature. In~2.3! T̂ is an operator
which describes interaction of two particles in presence
MSPI:

T̂5T̂hs
a 1(

i 51

n*

T̂li 1(
j 51

m*

T̂r j , ~2.4!

T̂hs
a 5s0

2E dŝ ŝgW u~ŝgW !$d~rW12rW21ŝs0
1!Ba~ ŝ !

2d~rW12rW22ŝs0
1!%. ~2.5!

The last expression is nothing but the operator of h
spheres interaction@25#, ŝ is the unit vector directed from
the second particle to the first one,gW 5vW 22vW 1 is the relative
velocity. Ba(ŝ) is the velocities shift operator as in th
classical mechanics of elastic collisions.T̂li 5(k5b,c,dT̂lik
is an interaction operator at thei th repulsive wall;

FIG. 1. Multistep potential of interaction withn* 51, m* 53.

FIG. 2. Types of possible interactions~schematic draw!.
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T̂r j 5(k5b,c,dT̂r jk is an interaction operator at thej th attrac-
tive wall; a,b,c,dare types of possible interactions~see Fig.
2!.

T̂
r j
l i k5s

r j
l i
2 E dŝ ŝgW u

r j
l i k~ ...!$d~rW12rW21ŝs

r j
l i
1

!B
r j
li k~ ŝ !

2d~rW12rW22ŝs
r j
l i
1

!%, ~2.6!

where

u l ib[u~2ŝgW !, ~2.7a!

u l ic[uS ŝgW 2A4D« l i

m D , ~2.7b!

u l id[uSA4D« l i

m
2ŝgW D u~ŝgW !, ~2.7c!

u r jb[u~ŝgW !, ~2.7d!

u r jc[uS 2ŝgW 2A4D« r j

m D , ~2.7e!

u r jd[uSA4D« l i

m
1ŝgW D u~2ŝgW !. ~2.7f!

Expressions~2.7! are nothing but conditions for specific typ
of interaction@u(z) is the unit step function#.

B
r j
li k(ŝ) is an operator which acts on velocities a

changes them in accordance with the interaction of a spe
type at each wall:
fic

B
r j
li k~ ŝ !Y~vW 1 ,vW 2!5Y~vW 1

r
l k ,vW

j
i k! ~2.8!

whereY is some arbitrary function ofvW 1 , vW 2 .
Type ‘‘a:’’

vW 185vW 11ŝ~ ŝgW !; ~2.9a!

vW 285vW 22ŝ~ ŝgW !; ~2.9b!

type ‘‘b:’’

vW 1l9 5vW 11
1

2
ŝS ŝgW 1A~ ŝgW !21

4D« l i

m D ; ~2.10a!

vW 1r9 5vW 11
1

2
ŝS ŝgW 2A~ ŝgW !21

4D« r j

m D ; ~2.10b!

type ‘‘c:’’

vW 1l-5vW 11
1

2
ŝS ŝgW 2A~ ŝgW !22

4D« l i

m D ; ~2.11a!

vW 1r- 5vW 11
1

2
ŝS ŝgW 1A~ ŝgW !22

4D« r j

m D ; ~2.11b!

type ‘‘d:’’

vW 1
r
l995vW 11ŝ~ ŝgW ![vW 18 . ~2.12!

Now kinetic equation~2.3! can be written explicitly:
S ]

]t
1vW 1

]

]rW1
D f 1~x1 ;t !5s0E dŝdvW 2ŝgW u~ŝgW !$ f 2~rW1 ,vW 18 ,rW11ŝs0

1 ,vW 28 ;t !2 f 2~x1 ,rW12ŝs0
1 ,vW 2 ;t !%

1(
i 51

n*

s l i
2E dŝdvW 2ŝgW Fu~2ŝgW !$ f 2~rW1 ,vW 1l9 ,rW11ŝs l i

1 ,vW 2l9 ;t !2 f 2~x1 ,rW12ŝs l i
2 ,vW 2 ;t !%

1uS ŝgW 2A4D« l i

m D $ f 2~rW1 ,vW 1l- ,rW11ŝs l i
2 ,vW 2l- ;t !2 f 2~x1 ,rW12ŝs l i

1 ,vW 2 ;t !%

1u~ŝgW !uSA4D« l i

m
2ŝgW D $ f 2~rW1 ,vW 1l99 ,rW11ŝs l i

1 ,vW 2l99 ;t !2 f 2~x1 ,rW12ŝs l i
1 ,vW 2 ;t !%G

1(
j 51

m*

s r j
2 E dŝdvW 2ŝgW Fu~ŝgW !$ f 2~rW1 ,vW 1r9 ,rW11ŝs r j

2 ,vW 2r9 ;t !2 f 2~x1 ,rW12ŝs r j
1 ,vW 2 ;t !%

1uS 2ŝgW 2A4D« r j

m D $ f 2~rW1 ,vW 1r- ,rW11ŝs r j
1 ,vW 2r- ;t !2 f 2~x1 ,rW12ŝs r j

2 ,vW 2 ;t !%

1u~2ŝgW !uSA4D« r j

m
1ŝgW D $ f 2~rW1 ,vW 1r99 ,rW11ŝs r j

2 ,vW 2r99 ;t !2 f 2~x1 ,rW12ŝs r j
2 ,vW 2 ;t !%G

5JE~ f 1 , f 1!1(
i 51

n*

~Jlib1Jlic1Jlid !1(
j 51

m*

~Jr jb1Jr jc1Jr jd !, ~2.13!
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JE denotes ordinary Enskog collision integral of ha
spheres.

One can draw the following conclusions regarding t
form of ~2.13!. In the absence of attractive and repulsi
walls (D« l i 50, i 51, . . . ,n* , D« r j 50, j 51, . . . ,m* ) this
kinetic equation transfers to that one of the RET theory@7,8#.
In the presence of only one finite attractive wall (D« l i 50,
i 51, . . . ,n* , D« r j 50, j 52, . . . ,m* , D« r1Þ0) one ob-
tains the kinetic equation of the RDRS theory@9#. Moreover,
it can be shown, that in the third special case when the se
walls is merged with some smooth potentialf t and Ds l i
5s l i 2s l i 21→0, i 51, . . . ,n* 21, D« l i →0, n* →`, Ds r j
5s r j 112s r j →0, j 51, . . . ,m* 21, d« r j →0, m* →`, and

2
D« l i

Ds l i
→f t8~s l i !,

D« r j

Ds r j
→f t8~s r j !,

the kinetic equation~2.13! transfers to that of the KMFT
theory @19#.

III. MACROSCOPIC CONSERVATION LAWS:
THE ZEROTH APPROXIMATION

Let us introduce the following set of hydrodynamic p
rameters: particles number densityn(rW;t), hydrodynamic ve-
locity uW (rW;t), densities of kineticvk and interactionv i en-
ergies:

n~rW1 ;t !5E dvW 2f 1~x1 ;t !, ~3.1a!

uW ~rW1 ;t !5E dvW 2f 1~x1 ;t !
vW 1

n~rW1 ;t !
, ~3.1b!

vk~rW1 ;t !5E dvW 2f 1~x1 ;t !
c1

2

2n~rW1 ;t !
, ~3.1c!

v i~rW1 ;t !5E drW2n~rW2 ;t !g2
q~rW1 ,rW2un~ t !,b~ t !!

1

2m
F~ urW12u!.

~3.1d!

HerecW (rW;t)5uW (rW;t)2vW is the heat velocity. We also intro

duce the set of interaction invariantsCW [$m,mvW , 1
2 mv2

1f(r 12)% @23#. Multiplying initial kinetic equation~2.13! by
each component of the vectorCW and integrating with respec
to vW 2 , one obtains the equation of continuity, the equation
motion, and equation of kinetic energy balance, respectiv

1

n

dn

dt
52

]

]r 1a
ua , ~3.2a!

dua

dt
52

1

mn

]

]r 1b
Pab , ~3.2b!

dvk

dt
52

1

mn H ]

]r 1a
qa1Pab

]

]r 1b
uaJ , ~3.2c!
of

f
y:

and

d

dt
5

]

]t
1ug

]

]r 1g
.

The equation for interaction energy density is obtained au
matically by differentiating the expression forvi with taking
into account the conservation laws forn(rW;t), uW (rW;t), and
vk ~3.2!. Stress tensorPab and heat flow vector consist o
the kinetic and interaction parts:

Pab5Pab
k 1Pab

i ,

qa5qa
k 1qa

i . ~3.3!

In its turn, the potential parts consist of the hard sphere te
and components caused by the set of attractive and repu
walls:

Pab
i 5P1ab

i 1(
i 51

n*

~Pi2ab
i 1Pi3ab

i 1Pi4ab
i !

1(
j 51

m*

~Pj 2ab
i 1Pj 3ab

i 1Pj 4ab
i !,

~3.4!

qa
i 5q1a

i 1(
i 51

n*

~qi2a
1 1qi3a

i 1qi4a
i !

1(
j 51

m*

~qj 2a
i 1qj 3a

i 1qj 4a
i !,

where indices 1, 2, 3, and 4 correspond to the types of in
actions ‘‘a,’’ ‘‘ b,’’ ‘‘ c,’’ and ‘‘ d,’’ respectively. Now let us
write down the expressions for the stress tensorPab and heat
flow vectorqa in an explicit form:

Pab
k 5E dvW 1f 1~x1 ;t !mc1ac1b ,

~3.5!

qa
k 5E dvW 1f 1~x1 ;t !

mc1
2

2
c1a ,

P1ab
i 5

1

2
ms0

3E dvW 1dvW 2dŝ ŝgW u~ŝgW !~v1a8 2v1a!ŝb

3E
0

1

dl f 2~rW11lŝs0
1 ,vW 1 ,rW11lŝs0

12ŝs0
1 ,vW 2 ;t !,

~3.6!

q1a
i 5

1

2
ms0

3E dvW 1dvW 2dŝ ŝgW u~ŝgW !S ~c18!2

2
2

c1
2

2 D ŝa

3E
0

1

dl f 2~rW11lŝs0
1 ,vW 1 ,rW11lŝs0

12ŝs0
1 ,vW 2 ;t !,

~3.7!
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Pi2ab
i 5

1

2
ms l i

3E dvW 1dvW 2dŝ ŝgW u~2ŝgW !~v1la9 2v1a!ŝb

3E
0

1

dl f 2~rW11lŝs l i
2 ,vW 1 ,rW11lŝs l i

2

2ŝs l i
2 ,vW 2 ;t !, ~3.8!

qi2a
i 5

1

2
ms l i

3E dvW 1dvW 2dŝ ŝgW u~2ŝgW !

3S ~c1l9 !2

2
2

c1
2

2
2

D« l i

m D ŝa

3E
0

1

dl f 2~rW11lŝs l i
2 ,vW 1 ,rW11lŝs l i

22ŝs l i
2 ,vW 2 ;t !,

~3.9!

Pi3ab
i 5

1

2
ms l i

3E dvW 1dvW 2dŝ ŝgW

3uS ŝgW 2A4D« l i

m D ~v1la- 2v1a!ŝb

3E
0

1

dl f 2~rW11lŝs l i
1 ,vW 1 ,rW11lŝs l i

1

2ŝs l i
1 ,vW 2 ;t !, ~3.10!

qi3a
i 5

1

2
ms l i

3E dvW 1dvW 2dŝ ŝgW uS ŝgW 2A4D« l i

m D
3F ~c1l- !2

2
2

c1
2

2
1

D« l i

2m G ŝa

3E
0

1

dl f 2~rW11lŝs l i
1 ,vW 1 ,rW11lŝs l i

12ŝs l i
1 ,vW 2 ;t !,

~3.11!

Pi4ab
i 5

1

2
ms l i

3E dvW 1dvW 2dŝ ŝgW u~ŝgW !uSA4D« l i

m
2ŝgW D

3~v1la99 2v1a!ŝbE
0

1

dl f 2~rW11lŝs l i
1 ,vW 1 ,rW1

1lŝs l i
12ŝs l i

1 ,vW 2 ;t !, ~3.12!

qi4a
i 5

1

2
ms l i

3E dvW 1dvW 2dŝ ŝgW u~ŝgW !uSA4D« l i

m
2ŝgW D

3S ~c1l99!2

2
2

c1
2

2 D ŝaE
0

1

dl f 2~rW11lŝs l i
1 ,vW 1 ,rW1

1lŝs l i
12ŝs l i

1 ,vW 2 ;t !. ~3.13!

Expressions forPj 2ab , Pj 3ab , Pj 4ab , qj 2a , qj 3a , andqj 4a
look similar to ~3.6!–~3.13! Pi2ab , Pi3ab , Pi4ab , qi2a ,
qi3a , andqi4a , respectively, at formal replacings l i

6→s r j
7 ,

ŝgW→2ŝgW , vW 1l→vW 1r , D« l i →D« r j .
At the end of this section we consider the macrosco
conservation laws in the zeroth approximation. Let us s
pose that the one-particle distribution function in this case
equal to the local-equilibrium Maxwell one:

f 1[ f 1
~0!~x1 ;t !

5n~rW1 ;t !S m

2pkBT~rW1 ;t ! D
3/2

expH 2
mc1

2~rW1 ;t !

2kBT~rW1 ;t !J .

~3.14!

Neglecting any spatial gradient one obtains

g2
q
„rW1 ,rW2un~rW1 ;t !,b~rW1 ;t !…

.g2
eqS r 12;nS rW11rW2

2
;t D ,bS rW11rW2

2
;t D D ,

~3.15a!

E
0

1

dl f 2~x1 ;x2 ;t !.E
0

1

dl f 2
~0!~ ...!

5g2
eq~sun,b! f 1

~0!~x1 ;t ! f 1
~0!~rW1 ,vW 2 ;t !.

~3.15b!

It is well-known from the equilibrium statistical mechan
ics @26# that any sharp jump of interaction potential results
a corresponding jump of binary correlation function:

g2
eq~s l i

1un,b!

g2
eq~s l i

2un,b!
5exp$bD« l i %, ~3.16a!

g2
eq~s r j

2un,b!

g2
eq~s r j

1un,b!
5exp$bD« r j %. ~3.16b!

Substituting these relations into~3.5!–~3.13!, one obtains
that Pab5pdab , wherep is the hydrostatic pressure whic
consists of the kineticpk and interactionpi parts;qa50:

p5pk1pi,

pk5nkBT,

pi5
2

3
pn2kBTL, ~3.17!

L5s0
3g2~s0

1!2(
i 51

n*

s l i
3g2~s l i

1!$e2bD« l i 21%

1(
j 51

m*

s r j
3 g2~s r j

2!$e2bD«r j 21%,

g2
eq[g2

eq
„sun~rW1 ;t !,b~rW1 ;t !….

Then, starting from~3.2!, one has the conservation laws
the zeroth approximation~Euler laws!:
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1

n

dn

dt
52

]uW

]rW1
, ~3.18a!

duW

dt
52

1

mn

]P

]rW1
, ~3.18b!

dvk

dt
52

1

mn
p

]uW

]rW1
, vk5

3

2mb
, ~3.18c!

v i
~0!~rW1 ;t !5

1

2m E drW12n~rW1 ;t !g2
eqi

3„urW12u;n~rW1 ;t !,b~rW1 ;t !…F~ urW12u!.

~3.18d!

IV. THE PRINCIPLE OF CONSTRUCTION OF HIGHER
ORDER APPROXIMATIONS: NORMAL SOLUTIONS
BY MEANS OF BOUNDARY CONDITIONS METHOD

Let us consider initial kinetic equation~2.3! @or ~2.13!#

S ]

]t
1vW 1

]

]rW1
D f 1~x1 ;t !5E dx2T̂f 2~x1 ,x2 ;t !5J~ f 1 , f 1!,

~4.1!

where the collision integralJ( f 1 , f 1) consists of the usua
one of the RET theory—JE( f 1 , f 1) and collision integrals
demanding on interaction on each wall. Such a structure
J( f 1 , f 1) is caused by the structure ofT̂-operator:

J~ f 1 , f 1!5JE~ f 1 , f 1!1(
i 51

n*

@Jlib1Jlic1Jlid #

1(
j 51

m*

@Jr jb1Jr jc1Jr jd #. ~4.2!

Going to the schema of construction of normal solutions
kinetic equations with the help of boundary conditions@22#,
let us introduce in the right-hand side of~4.1! an infinitely
small source2 ē( f 12 f 1

(0)), whereē→0:

S ]

]t
1vW 1

]

]rW1
D f 1~x1 ;t !5J~ f 1 , f 1!2 ē~ f 12 f 1

~0!!. ~4.3!

For deviationd f 5 f 12 f 1
(0) this equation reads:

S ]

]t
1vW 1

]

]rW1
1 ē D d f 52S ]

]t
1vW 1

]

]rW1
D f 1

~0!1J~ f 1
~0! , f 1

~0!!

1J~ f 1
~0! ,d f !1J~d f , f 1

~0!!1J~d f ,d f !.

First and foremost it should be noted that the collision in
gral in the usual Boltzmann equation is local (f 1 is a function
of the same Cartesian coordinaterW1). In our case the
J( f 1 , f 1) is a nonlocal collision integral.f 1 is calculated in
pointsrW1 andrW16ŝs, integration with respect toŝ ~surface
of unit sphere! is performed. As a result, in one way o
another, we will find solutions in some approximation, a
there is no need ‘‘to draw’’ the whole nonlocal collisio
integral. It is much more convenient to use its approxim
of

o

-

e

expression. This approximation should be of the same o
as within the frame for the solution of total kinetic equatio
In such a way, let us expand functionsf 1 and g2

q in the
vicinity of rW1 into series in deviations6ŝs. This results in:

J[(
k50

`

Jk5J01J* , J* 5 (
k51

`

Jk , ~4.5!

I[(
k50

`

I k5I 01I * , I * 5 (
k51

`

I k , ~4.6!

wherek is the expansion order. AllJk here are local func-
tionals of f 1 . We also use the following notations:I (d f )
5J( f 1

(0) ,d f )1J(d f , f 1
(0)) for the linearized nonlocal colli-

sion operator. We have similar expansion for this operato
the relation~4.6!. HereI 0(d f )5J0( f 1

(0) ,d f )1J0(d f , f 1
(0)) is

a linearized local collision operator which coincides wi
that of the usual Boltzmann kinetic equation within a fac
of g2

eq(s0
1) if one neglects the set of walls except hard sph

wall. Then equation~4.4! transfers to

]

]t
d f 1 ēd f 2I 0~d f !52

D

Dt
f 1

~0!1J~ f 1
~0! , f 1

~0!!1I * ~d f !

1J~d f ,d f !2vW 1

]

]rW1
d f . ~4.7!

To solve this equation by means of the boundary conditi
method, we need its integral form. To this end let us int
duce operatorS(t,t8) with the following properties:

]

]t
S~ t,t8!5I 0S~ t,t8!, S~ t,t !51. ~4.8!

Using the limiting condition lim
t→2`

d f (t)50 one obtains:

d f ~ t !5E
2`

t

dt8eē~ t82t !S~ t,t8!F D

Dt
f 1

~0!1J~ f 1
~0! , f 1

~0!!

1I * ~d f !1J~d f ,d f !2vW 1

]

]rW1
d f G

t8

. ~4.9!

Equation~4.9! is completely ready for the iteration proce
dure. This procedure can be organized as follows:

d f ~k11!~ t !5E
2`

t

dt8eē~ t82t !S~ t,t8!F D

Dt
f 1

~0!

1J~k11!~ f 1
~0! , f 1

~0!!1I * ~k11!~d f ~k!!

1J~k11!~d f ~k!,d f ~k!!2vW 1

]

]rW1
d f ~k!G

t8

,

~4.10!

where

J~k11!5 (
k850

k11

Jk8 ,
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I * ~k11!5 (
k850

k11

I k8 .

Each (k11)th step uses conservation laws inkth approxi-
mation.

V. ONE-PARTICLE DISTRIBUTION FUNCTION IN THE
FIRST APPROXIMATION

The expression for the distribution functionf 1 in the first
approximation is obtained if one putsk50 in ~3.5! and takes
into account the equalityd f (0)50. Then we have:

d f ~1!~ t !5E
2`

t

dt8ee~ t82t !S~ t,t8!

3F D

Dt
f 1

~0!1J0~ f 1
~0! , f 1

~0!!1J1~ f 1
~0! , f 1

~0!!G
t8

.

~5.1!

It can be shown that

J0~ f 1
~0! , f 1

~0!!50. ~5.2!

Making the expansion up to the linear terms in gradients
hydrodynamic parameters

g2
q
„rW1 ,rW2un~ t !,b~ t !….g2

eqS r 12;nS rW11rW2

2
;t D ,bS rW11rW2

2
;t D D

5
1

2
rW 12

]

]rW1
g2

eq1..., ~5.3a!
f

f 1~rW16ŝs!5 f 1~rW1!6
]

]rW1
f 1ŝs1... ~5.3b!

and taking into account the conservation laws~3.18!, one
obtains after very unwieldy calculations the following:

2
D

Dt
f 1

~0!1J1~ f 1
~0! , f 1

~0!!5Ka

]

]r 1a
ln T1Lab

]

]r 1b
ua ,

~5.4!

Ka52 f 1
~0!F11

3

5

pi

nkBTGF mc1
2

2kBT
2

5

2Gc1a

1(
i 51

n*

Ka l i 1(
j 51

m*

Kar j , ~5.5!

Lab52 f 1
~0!F11

2

5

pi

nkBTG m

kBT Fc1ac1b2
1

3
c1

2dabG
1(

i 51

n*

Lab l i 1(
j 51

m*

Labr j , ~5.6!

where
Ka
r j
l i 57

8

p2 n2s
r j
l i g2

eq~s
l i
r j
6

!
m

2kBT F 1

30
e2s2E dxW2 exp$2h22v2%hbS vavb2

1

3
v2dabD

3H 41
s3

v5 ~5v216s2!1
1

v5 ~v21s2!3/2~4v226s2!J 2
1

30 Ev.s
dxW2 exp$2h22v2%hbS vavb2

1

3
v2dabD

3H 41
s3

v5 ~5v229s2!1
1

v5 ~v22s2!3/2~4v216s2!J 1
1

9
e2s2E dxW2 exp$2h22v2%haS v22

s3

v
1

1

v
~v21s2!3/2D

2
1

9 Ev.s
dxW2 exp$2h22v2%haS v22

s3

v
1

1

v
~v21s2!3/2D G , ~5.7!

Lab
r j
l i 57

8

p2 n2&s
r j
l i g2

eq~s
r j
l i
6

!S m

2kBTD 3/2F 1

30
e2s2E dxW2 exp$2h22v2%S vavb2

1

3
v2dabD

3H 41
s3

v5 ~5v216s2!1
1

v5 ~v21s2!3/2~4v226s2!J 2
1

30 Ev.s
dxW2 exp$2h22v2%S vavb2

1

3
v2dabD

3H 41
s3

v5 ~5v229s2!1
1

v5 ~v22s2!3/2~4v216s2!J 1
1

9
e2s2E dxW2 exp$2h22v2%S v22

s3

v
1

1

v
~v21s2!3/2D dab

2
1

9 Ev.s
dxW2 exp$2h22v2%S v22

s3

v
1

1

v
~v21s2!3/2D dabG . ~5.8!
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Here

s5 H ~bDe l i !
1/2,

~bDe r j !
1/2, xW25S m

4kBTD 1/2

cW2 , ~5.9!

vW 5
1

2 S m

kBTD 1/2

~cW22cW1!, ~5.10a!

hW 5
1

2 S m

kBTD 1/2

~cW11cW2!. ~5.10b!

Then

f 1[ f 1
~1!5 f 1

~0!1d f ~1!, ~5.11a!

d f ~1!~ t !5E
2`

t

dt8ee~ t82t !S~ t,t8!

3H Ka

]

]r 1a
ln T1Lab

]

]r 1b
uaJ

t8

.

~5.11b!

It can be shown that*dvW 1d f (1)(rW1 ,vW 1 ;t)CW 50, i.e., the hy-
drodynamic parametersn(rW1 ;t), uW (rW1 ;t), b, v i are com-
pletely defined by the local one-particle distribution functi
f 1

(0) ~3.14!.

VI. CONSERVATION LAWS IN THE FIRST
APPROXIMATION: STATIONARY PROCESS

First, let us calculate kinetic parts of the stress tensor
heat flux vector. Substituting one-particle distribution fun
tion f 1 ~5.11! into ~3.5! one obtains:

Pab
k~1!5pkdab1E dt8ee~ t82t !M k~ t,t8!@Sab# t8 , ~6.1!

Sab5
]

]r 1a
ua1

]

]r 1b
ub2

2

3

]

]r 1g
ugdab ,

~6.2!

qa
k~1!5E dt8ee~ t82t !Lk~ t,t8!F ]

]r 1a
ln TG

t8

,

where cores of kinetic parts of transport laws read:

M k~ t,t8!5
1

10E dvW 1mc1ac1bS~ t,t8!$Lab% t8 , ~6.3!

Lk~ t,t8!5
1

3 E dvW 1c1a

mc1
2

2
S~ t,t8!$Ka% t8 . ~6.4!

To calculate the potential~interaction! parts of Pab
i(1) and

qa
i(1) , the expression *0

1dl f 2(rW11lŝs,vW 1 ,rW11lŝs
2ŝs,vW 2 ;t)5z11z2 should be expanded into series in, fir
of all, inhomogeneity of distribution function, then in devi
tion d f (1). In both cases one should keep only the line
terms in gradients. Calculations give:
d
-

r

z15
1

2
sg2

eq~s! f 1
~0!~x1 ;t ! f 1

~0!~rW1 ,vW 2 ;t !ŝ
]

]rW1
ln

f 1
~0!~rW1 ,vW 1 ;t !

f 1
~0!~rW1 ,vW 2 ;t !

,

~6.5!

z25g2
eq~s!$ f 1

~0!~x1 ;t !d f ~1!~rW1 ,vW 2 ;t !

1d f ~1!~x1 ;t ! f 1
~0!~rW1 ,vW 2 ;t !%. ~6.6!

z1 is the expansion off 1
(0) in inhomogeneity~the inhomoge-

neity of d f (1) is considered as a negligibly small quantity!,
z2 is the expansion in deviationd f (1). Then, general expres
sions ~3.6!–~3.13! with taking into account~6.5! and ~6.6!
transfer to

Pab
i1 5E dt8ee~ t82t !M i~ t,t8!@Sab# t8

2
4

9
n2ApmkBTH2H 6

5
Sab1

]

]r 1g
ugdabJ ,

~6.7!

qa
i15E dt8ee~ t82t !L i~ t,t8!F ]

]r 1a
ln TG

t8

2
2

3
n2kBAnkBT

m
H2

]T

]r 1a
, ~6.8!

whereM i, L i are cores of the potential parts of transfer law
Their structure is very complicated. To save space, th
expressions are not presented here in their explicit form.

H25s0
4g2

eq~s0
1!1(

i 51

n*

s l i
4g2~s l i

1!e2bDe l i J~bDe l i !

1(
j 51

m*

s r j
4 g2

eq~s r j
1!e2bDer j J~bDe r j !, ~6.9!

J~s!5es2 1
2 s2K1* ~s!, ~6.10a!

K1* ~s!52E
0

`

dx x2e2x2Ax21s. ~6.10b!

In such a way, the transport laws in the first approxim
tion are in an integral form only partially. They are in a
integral form completely in the case of solution of the usu
Boltzmann kinetic equation@22#. There are also local-time
terms@second terms in~6.7! and ~6.8!#, caused by the inho-
mogeneity of f 1

(0) and, therefore, not sensitive to th
‘‘memory’’ effects.

In the stationary case, the operatorI 0 does not depend on
time explicitly:

S~ t,t8!5eI 0~ t2t8!.

Then

d f ~1!5E dt eete2I 0tH Ka

]

]r 1a
ln T1Lab

]

]r 1b
uaJ ,

~6.11!
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t5t82t.

Let us define the following quantities:

aa~t!5e2I 0tH Ka

]

]r 1a
ln TJ , ~6.12a!

bab~t!5e2I 0tH Lab

]

]r 1b
uaJ , ~6.12b!

with the initial conditions

aa~0!5Ka

]

]r 1a
ln T, ~6.12c!

bab~0!5Lab

]

]r 1b
ua . ~6.12d!

It can be shown that the operatorI 0 has the same mathemat
cal properties that the corresponding operator of the u
Boltzmann kinetic equation:

I 0~ f 1
~0!CW !50, ~6.13a!

I 0~j!5lj, l,0. ~6.13b!

Then, fort,0, lmax[max$l%:

iaa~t!i<iaa~0!iexp$lmaxt%, ~6.14a!

ibab~t!i<ibab~0!iexp$lmaxt%, ~6.14b!

and

iwi5E dvW 1@ f ~0!#21w2.

Using last transformations, equation~6.11! transfers to:

d f ~1!5 lim
e→10

E
2`

0

dt eet@aa~t!1bab~t!#

5E
2`

0

dt@aa~t!1bab~t!#, ~6.15!

or, introducingd f (1)5f (1)f 1
(0) , it can be rewritten in the

following final form:

f~1!5Aa

]

]r 1a
ln T1Bab

]

]r 1b
ua . ~6.16!

Aa andBab satisfy the integral equations like:

I 0~Aa!5Ka , ~6.17a!

I 0~Bab!5Lab . ~6.17b!

OperatorI 0 has the following structure:

I 05I a1(
i 51

n*

$I ib1I ic1I id%1(
j 51

m*

$I jb1I jc1I jd%,

~6.18!
al

where

I a~f1!5s0
2g2

eq~s0
1!E dvW 2dŝ ŝgW u~ŝgW ! f 1

~0!~vW 1! f 1
~0!~vW 2!

3$f11f22f182f28%, ~6.19!

I ib~f1!5s l i
2g2

eq~s l i
2!E dvW 2dŝ ŝgW u~2ŝgW ! f 1

~0!~vW 1! f 1
~0!~vW 2!

3$f11f22f1i9 2f2i9 %, ~6.20!

I ic~f1!5s l i
2g2

eq~s l i
1!E dvW 2dŝ ŝgW uS ŝgW 2A4De l i

m D
3 f 1

~0!~vW 1! f 1
~0!~vW 2!$f11f22f1-2f2i-%,

~6.21!

I id~f1!5s l i
2g2

eq~s l i
1!E dvW 2dŝ ŝgW u~ŝgW !uSA4De l i

m
2ŝgW D

3 f 1
~0!~vW 1! f 1

~0!~vW 2!$f11f22f1i992f2i99%, ~6.22!

I jb~f1!5s r j
2 g2

eq~s r j
1!E dvW 2dŝ ŝgW u~ŝgW ! f 1

~0!~vW 1! f 1
~0!~vW 2!

3$f11f22f1 j9 2f2 j9 %, ~6.23!

I jc~f1!5s r j
2 g2

eq~s r j
2!E dvW 2dŝŝgW uS 2ŝgW 2A4De r j

m D
3 f 1

~0!~vW 1! f 1
~0!~vW 2!$f11f22f1 j- 2f2 j- %, ~6.24!

I jd~f1!5s r j
2 g2

eq~s r j
1!E dvW 2dŝŝgW u~2ŝgW !

3uSA4De r j

m
1ŝgW D f 1

~0!~vW 1! f 1
~0!~vW 2!

3$f11f22f1 j-82f2 j-8%, ~6.25!

f1[f~rW1 ,vW 1 ;t !, ~6.26a!

f2[f~rW1 ,vW 2 ;t !, ~6.26b!

f1
j
i [f~rW1 ,vW 1

r
l* ;t !, ~6.26c!

f2
j
i [f~rW1 ,vW 2

r
l* ;t !, ~6.26d!

* [~8,9,-,99!. ~6.26e!

In the case of SET~RET! theory, the linearized local in-
tegral operatorI 05I a , whereas in the case of the Boltzman
kinetic equation there is the usual Boltzmann’s lineariz
operator andI a tends to that one in the low density limit:n
→0, g2

eq(s0
1)→1, I a→I B .

In such a way, to find one-particle distribution function
the first approximation in stationary case one should ana
integral equations~6.17! and solve them.
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VII. SOLUTIONS TO THE INTEGRAL EQUATIONS

To find quantitiesAa and Bab we have set of integra
equations ~6.17!. Let us define the dimensionless se
velocity: wW 5(m/2kBT)1/2cW . Using the property of isotropy
~in the velocity space! of the operatorI 0 and structures ofKa
~5.7! and Lab ~5.8! solutions to~6.17! can be presented a
follows:

Aa5w1aA~w1!, ~7.1!

B0ab5B1ab1B2ab~w1!dab , ~7.2!

B1ab5S w1aw1b2
1

3
w1

2dabDB1~w1!.

The structure ofB0ab is caused by the structure ofLab :
Lab5L1ab1L2ab , where in L1ab are all terms with
(w1aw1b2 1

3 w1
2dab), in L2ab are all terms withdab . Then

I 0„w1aA~w1!…5Ka , ~7.3a!

I 0S S w1aw1b2
1

3
w1

2dabDB1~w1! D5L1ab , ~7.3b!

I 0„B2~w1!…5L2 . ~7.3c!

Following the standard Chapman-Enskog method@23#, let us
representA(w1), B1(w1) and B2(w1) via the Sonine-
Laguerre polynomials

Sn
m~z!5(

j 50

m

~2z! j
G~n1m11!

j ! ~m2 j !!G~n1 j 11!
, ~7.4!

i.e., in the form

A~w1!5 (
m50

`

a~m!S3/2
~m!~w1

2!, ~7.5a!

B1~w1!5 (
m50

`

b1
~m!S5/2

~m!~w1
2!, ~7.5b!

B2~w1!5 (
m50

`

b2
~m!S1/2

~m!~w1
2!. ~7.5c!

Fredgolm condition puts limitations on expansion coe
cientsa(m) andb(m): the correction in the first approximatio
does not contribute to hydrodynamic paramet
*dwW 1f 1

(0)f (1)50. By this means:

a~0!50, ~7.6a!

b~0!50, ~7.6b!

b~1!50. ~7.6c!

It is known that the Sonine-Laguerre polynomials co
verge quickly. Therefore only the first nonzero term is co
sidered in expansion. This is as a rule and we will follow t
procedure. Such an approximation gives the error for tra
-

s

-
-

s-

port coefficients~practically for all types of interaction po
tentials! not exceeding 2%. Thus, we have:

A~w1!.a~1!S3/2
~1!~w1

2!5a~1!~ 5
2 2w1

2!, ~7.7a!

B1~w1!.b1
~0!S5/2

~0!~w1
2!5b1

~0! , ~7.7b!

B2~w1!.b2
~0!S1/2

~2!~w1
2!5b2

~2!~ 15
8 2 5

2 w1
21 1

2 w1
4!,

~7.7c!

and

I 0„w1aa~1!~ 5
2 2w1

2!…5Ka , ~7.8a!

I 0„~w1aw1b2 1
3 w1

2dab!b1
~0!
…5L1ab , ~7.8b!

I 0„b2
~2!~ 15

8 2 5
2 w1

21 1
2 w1

4!…5L2 . ~7.8c!

Multiplying these equations byw1aS3/2
(1)(w1

2), (w1aw1b

2 1
3 w1

2dab), S1/2
(2)(w1

2), respectively, and integrating with re
spect towW 1 , one finds:

a~1!5
*dwW 1Kaw1aS3/2

~1!~w1
2!

*dwW 1I 0„w1aS3/2
~1!~w1

2!…w1aS3/2
~1!~w1

2!
, ~7.9!

b1
~0!5

*dwW 1L1ab~w1aw1b2 1
3 w1

2dab!

*dwW 1I 0~w1aw1b2 1
3 w1

2dab!~w1aw1b2 1
3 w1

2dab!
,

~7.10!

b2
~0!5

*dwW 1L2S1/2
~2!~w1

2!

*dwW 1I 0„S1/2
~2!~w1

2!…S1/2
~2!~w1

2!
. ~7.11!

First-hand calculations fora(1) andb(0) give the following:

a~1!5

15
4 n~11 2

5 pnL!2 3
2 Apn2D1

8A2pn2$l* 1 11
32 D2%

, ~7.12!

b1
~0!52

5n~11 4
15 pnL!2 4

3 Apn2D1

8A2pn2$l* 1 1
12 D2%

S m

2kBTD 1/2

,

~7.13!

where

D152(
i 51

n*

s l i
3g2

eq~s l i
1!Dsie

2DsiHs~Dsi !

1(
j 51

m*

s r j
3 g2

eq~s r j
2!Dsje

2DsjHs~Dsj !,

D25(
i 51

n*

s l i
3g2

eq~s l i
1!Dsi

2e2Dsi1(
j 51

m*

s r j
3 g2

eq~s r j
2!Dsj

2e2Dsj ,

Dsi5bDe l i , i 51, . . . ,n* ,

Dsj5bDe r j , j 51, . . . ,m* ,



id

a-

fl
V
o

rm
s

ib

ns

er-
t

ts
e

on-

PRE 62 8031KINETIC EQUATION FOR LIQUIDS WITH A . . .
l* 5
1

2 Fs0g2
eq~s0

1!1(
i 51

n*

s l i
3g2

eq~s l i
1!eDsiJ~Dsi !

1(
j 51

m*

s r j
3 g2

eq~s r j
2!eDsjJ~Dsj !G ,

Hs~z!5
Ap

2
1esGS 3

2
,zD , ~7.14!

G(r ,s)5*s
`dx xr 21e2x is the incompleteG-function. Since

b2
(2) does not contribute into transport coefficients, we d

not calculate it.
In this manner, one-particle distribution function in st

tionary case reads:

f 1
~1!5 f 1

~0!~11f~1!!, ~7.15a!

f~1!.a~1!~ 5
2 2w1

2!w1a

]

]r 1a
ln T1b1

~0!~w1aw1b2 1
3 w1

2dab!

3
]

]r 1b
ua1b2

~2!~ 15
8 2 5

2 w1
21 1

2 w1
4!

]

]r 1a
ua , ~7.15b!

wherea(1) andb(2) are defined by~7.12! and ~7.13!, corre-
spondingly.

VIII. CALCULATION OF TRANSPORT COEFFICIENTS:
SOME LIMITING CASES

General expressions for the stress tensor and heat
vector for nonstationary process were obtained in Sec.
But explicit calculations were performed for only one part
it which is inhomogeneous onf 1

(0) and local-time next to
other integral terms. In the stationary case, the integral te
transfers to local-time ones. The explicit calculation of the
terms becomes possible. Substituting one-particle distr
tion function f 1 ~7.15! into the general expressions~3.5!–
~3.13! and taking into account new structure for~6.6!:

z25g2
eq~s! f 1

~0!~x1 ;t ! f 1
~0!~rW1 ,vW 2 ;t !$f~1!~x1 ;t !

1f~1!~rW1 ,vW 2 ;t !%, ~8.1!

one obtains:

Pab5pdab2k
]

]r 1g
ugdab22hSab , ~8.2!

qa52l
]

]r 1a
T, ~8.3!

whereSab is the velocities shift tensor. Explicit expressio
for the transport coefficients, namely, bulkk and shearh
viscosities and thermal conductivityl, read:

k5
4

9
n2~pmkBT!1/2H2 , ~8.4!

h5
3

5
k1

1

2
nkBTH 11

8

15
ApnH1J b~0!, ~8.5!
ux
I.
f

s
e
u-

l5
3kB

2m
k1

5

4
nkBS 2kBT

m D 1/2H 11
4

5
ApnH1J a~1!,

~8.6!

where

b~0!52b1
~0! ,

H15
Ap

2
L2(

i 51

n*

s l i
3g2

eq~s l i
1!Dsie

2Dsi

3HAp

4
2

Dsi
3/2

3
1

1

3
eDsiGS 5

2
,Dsi D J

1(
j 51

m*

s r j
3 g2

eq~s r j
2!Dsje

2Dsj

3HAp

4
2

Dsj
3/2

3
1

1

3
eDsjGS 5

2
,Dsj D J . ~8.7!

Thus, the problem of transport coefficients for specific int
action potential~2.2! in our approach is solved. Finally, le
us consider some limiting cases.

A. Hard spheres potential

De l i 50, Dsi50, i 51, . . . ,n* ,

De r j 50, Dsj50, j 51, . . . ,m* . ~8.8!

In this case model MSPI~2.2! transfers to that for hard
spheres, whereas kinetic equation~2.13! transfers to that of
the SET~RET! theory. It is naturally to expect that resul
~8.4!–~8.6! should transfer to the well-known results of th
SET theory. This assertion really takes place. With the c
dition ~8.8! we have:

L→s0
3g2

eq~s0
1!, D1→0,

H1→
Ap

2
L, D2→0,

H2→s0
4g2

eq~s0
1!, J~0!50,

H3→Ap, K1* ~0!51,

l* → 1

2
s0

2g2
eq~s0

1!, G~3/2!5
Ap

2
.

Then

a~1!→

15

4
n„11 2

5 pns0
3g2

eq~s0
1!…

4A2pn2s0
2g2

eq~s0
1!

, ~8.9!

b~0!→
5n„11 4

15 pns0
3g2

eq~s0
1!…

4A2pn2s0
2g2

eq~s0
1!

S m

2kBTD 1/2

, ~8.10!
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p→nkBTS 11
2

3
pns0

3g2
eq~s0

1! D , ~8.11!

k→ 4

9
n2ApmkBTs0

4g2
eq~s0

1!, ~8.12!

h→ 3

5
k1

5

16S mkBT

p D 1/2 1

s0g2
eq~s0

1!

3S 11
4

15
pns0

3g2
eq~s0

1! D 2

, ~8.13!

l→ 3kB

2m
k1

75

64S kBT

pmD 1/2 1

s0g2
eq~s0

1!

3S 11
2

5
pns0

3g2
eq~s0

1! D 2

. ~8.14!

Relations~8.12!–~8.14! obtained from~8.4!–~8.6! with tak-
ing into account~8.8!, are identical to those from the SE
~RET! theory which are obtained by means of the stand
Chapman-Enskog procedure.

B. Square-well potential

De l i 50, Dsi50, i 51, . . . ,n* , De r1Þ0,
~8.15!

De r j 50, Dsj50, j 52, . . . ,m* , Ds15be.

In this case, initial MSPI~2.2! transfers into ‘‘square-well’’
one of the DRS~RDRS! theory. Defining s r15s, Ds1
5Ds5bDe r1[be, wheree is the square-well depth, an
taking into account~8.15! one obtains:

L→s0
3g2

eq~s0
1!1s3g2~s2!$e2Ds21%,

l* → 1

2
$s0

2g2
eq~s0

1!1s2g2
eq~s2!e2DsJ~Ds!%,

H1→
Ap

2
L1s3g2

eq~s2!Dse2Ds

3HAp

4
2

1

3
Ds3/21

1

3
Ds3/21

1

3
eDsGS 5

2
,DsD J ,

H2→s0
4g2

eq~s0
1!1s4g2

eq~s2!eDsJ~Ds!,

H3→
Ap

2
1eDsGS 3

5
,DsD ,

D1→s3g2
eq~s2!Dse2DsH3~Ds!,

D2→s2g2
eq~s2!Ds2e2Ds,

J~Ds!5eDs2
1

2
Ds22E

0

`

dx x2Ax21Ds,
d

a~1!→
15
4 n~11 2

5 pnL!1 3
2 Apn2s3g2

eq~s2!Dse2DsH3~Ds!

8A2pn2$l* 1 11
32 s2g2

eq~s2!Ds2e2Ds%
~8.16!

b~0!→
5n~11 4

15 pnL!1 4
3 Apn2s3g2

eq~s2!Dse2DsH3~Ds!

8A2pn2$l* 1 1
12 s2g2

eq~s21!Ds2e2Ds%

3S m

2kBTD 1/2

, ~8.17!

and

p→nkBTS 11
2

3
pnL D , ~8.18!

k→ 4

9
n2ApmkBTH3 , ~8.19!

h→ 3

5
k1

1

2
nkBTH 11

8

15
ApnH1J b~0!, ~8.20!

l→ 3kB

2m
k1

5

4
nkBS 2kBT

m D 1/2H 11
4

5
ApnH1J a~1!.

~8.21!

Relations for transport coefficients~8.19!–~8.21! coincide
with those for DRS~RDRS! theory which were obtained by
means of the standard Chapman-Enskog procedure.
course, only the first approximation in gradients of the h
drodynamic parameters is implied everywhere.

C. Smooth long-range potential

Finally let us consider briefly the case, when

De l i →0, Ds l i →0, i 51, . . . ,n* . n* →`,
~8.22!

De r j →0, Ds r j →0, j 51, . . . ,m* , m* →`,

and an additional condition for~8.22!:

2
De l i

Ds l i
→f t8~s l i !, ~8.23a!

De r j

Ds r j
→f t8~s r j !. ~8.23b!

From the geometrical point of view,~8.22! and~8.23! corre-
spond to the case when MSPI~2.2! is ‘‘merged’’ into some
smooth long-range potentialf t at r .s. It can be shown that
in this case

p→nkBTS 11
2

3
pns0

3g2
eq~s0

1!

2
2

3
pn2E dr r 3g2

eq~r !f t8~r ! D . ~8.24!

Expressions fork, h andl are completely similar to~8.12!–
~8.14! of the SET~RET! theory with the only difference in
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TABLE I. Parameters for different theories and calculations for transport coefficienth. Bottom part
contains square displacement of results of SET~RET!, MET ~BH!, DRS ~RDRS! theories and our theory
denoted by GDRS~i.e., generalized DRS! from MD simulation. The GDRS result is the closest to M
simulation. The same parameters were used for calculation of other transport coefficients.

SET ~RET! SIGMZ051.047
MET ~BH! s0(T)5sLJ@1.06810.3837(kBT/eLJ)#/@1.00010.4293(kBT/eLJ)#

DRS ~RDRS! SIGMZ050.891, SIGMZM51.342, EZDRS50.929
GDRS SIGMZ050.940, SIGMZM51.960, np53, mp59, n* 52, m* 56

MD SET ~RET! MED ~BH! DRS ~RDRS! GDRS

0.0 0.01250 0.00794 0.000217 0.00020
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by
the form for g2
eq(s0

1). In SET ~RET!, g2
eq(s0

1) is a binary
equilibrium correlation function of hard spheres on conta
whereas here it is the binary equilibrium correlation functi
of a system with the interaction potential of the hard sphe
type plus a long ‘‘tail’’ f t ,r .s0 . Thus, one obtains the
final relations forp ~8.24! and k, h, and l of the KMFT
theory @19#.

IX. NUMERICAL CALCULATIONS

First of all, let us remember that in the theory under co
sideration we deal with the multistep potential of interacti
~2.2!. If we have any information about real~smooth, of
course! potential of interaction, we should deal with a larg
number of definition parameters. However, when interact
potential is known, the number of independent master
rameters is greatly reduced. That is the necessary condi
t,

s

-

n
a-
n,

because a model interaction potential should approximate
real potential more or less correctly. The first question
pearing here is how to represent an initial smooth interac
potential by a multistep one. Let us consider one poss
way of definition in which all distances between walls of t
same kind are equal, i.e.:Ds l i 5const, i 51, . . . ,n* , Ds r j

5const,j 51, . . . ,m* . Then, to define the model interactio
potential one needs to set the position of the hard sphere
s0 , the position of the most removed attractive wallsmax

(smax5srm*
), the number of short lengths dividing repulsiv

area@s0 ,smean# np , and the number of short lengths divid
ing attractive area@smean,smax# mp , wheresmeanis the mini-
mum position of a real interaction potential. Now MSPI
built. Numbers of repulsiven* and attractivem* walls are
uniquely determined via numbers of dividing lengthsnp and
mp . In this representation of a real interaction potential
TABLE II. Transport coefficientsk, h, andl calculated within different theories.

Bulk viscosityk (1024 Pa sec)

r, g/cm3 SET MET DRS GDRS

1.4327 0.33387 0.26739 0.43672 0.43371
1.4180 0.32270 0.25654 0.40946 0.40538
1.2777 0.22253 0.17126 0.25314 0.24708
1.1621 0.16222 0.12277 0.17466 0.16928
0.8017 0.05092 0.03919 0.05914 0.05653

Shear viscosityh (1023 Pa sec)

r, g/cm3 SET MET DRS GDRS

0.2970 0.27460 0.22428 028794 0.28953
0.2620 0.26633 0.21627 0.27144 0.27189
0.1734 0.19113 0.15248 0.17491 0.17248
0.1255 0.14577 0.11622 0.12627 0.12383
0.5790 0.06014 0.05210 0.05134 0.05087

Thermal conductivityl @W/~m K!#

T, K SET MET DRS GDRS

83.90 0.22107 0.18186 0.17078 0.16850
86.50 0.21468 0.17566 0.16187 0.15877

104.50 0.15622 0.12602 0.10790 0.10325
119.56 0.12080 0.09763 0.08029 0.07603
147.10 0.05254 0.04608 0.03484 0.03309
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FIG. 3. Transport coefficients for argon.~a! bulk viscosityk along the liquid-vapor curve.x-axis is in units ofr~g/cm3!, namely: 1.4327,
1.4180, 1.1621, and 0.8017 for 1, 2, 3, and 4, respectively.~b! shear viscosityh. x-axis is in units of@r(g/cm3),T~K!#, namely: r1

51.43, T1583.9, r251.28, T25104.5, r351.16, T35119.56, andr450.802, T45147.1. ~c! h5h(T) at r5rcr; ~d! h5h(r) at T
5139.7 K. Experimental data plotted in~c! and ~d! are taken from@28#.
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MSPI, one realizes original entwining of model potent
around the real one.

The second question is the problem of optimal dividin
i.e., how to define the parameterss0 , smax, np , mp so that
fair results are obtained already in the first approximati
We tried to solve this problem numerically.

Numerical computations of transport coefficients we
carried out for argon with the Lennard-Jones potential

f real.fLJ54eLJF S sLJ

r D 12

2S sLJ

r D 6G , ~9.1!

wheresLJ53.405 Å, eLJ /kB5119.8 K.
The starting point in the numerical analysis of transp

coefficients of our theory are relations~8.4!–~8.6! with addi-
tional equation for binary equilibrium correlation functio
g2

eq of a system with potential in a form of multistep fun
tion. In our calculation we used forg2

eq the following ap-
proximation:

g2
eq~r !5g2

~0!~r !exp$2bf~r !%, ~9.2a!

f~r ![w~r !, ~9.2b!

whereg2
(0)(r ) is the binary equilibrium correlation functio

of hard spheres of diameters0 . Its analytical expression is
well known @27#.
l

,

.

t

First, one calculates the transport coefficients along
gas-liquid saturation curve. There were five points of cal
lation (r i5mni , Ti , i 51, . . . ,5)along the curve of satura
tion for which such a transport coefficient as the shear v
cosity h is known from the MD simulation@19#. MSPI
parameters np , mp , SIGMZ05s0 /sLJ , SIGMZM
5smax/s0 were defined from the minimum of square di
placement of the theory from corresponding MD results. P
rameters of the DRS~RDRS! theory were defined in much
the same way: SIGMZ05s0 /sLJ , SIGMZM5s/s0 ,
EDRS5e/eLJ , as well as for SET~RET! theory: SIGMZ0
5s0 /sLJ . Table I shows the results. Table II shows all r
sults of calculation of transport coefficients by different the
ries. Their comparison with experimental data and MD sim
lations are presented in Figs. 3 and 4. It is clearly seen
GDRS results practically coincide with the experimental d
in a wide range of densities and temperatures.

X. CONCLUDING REMARKS

Let us discuss areas of application of kinetic equat
~2.13!. We should remember conditions of general derivat
of this equation within the frame of Bogolubov-Zubarev a
proach@29,30#. The specific demand to the geometry of
potential and to the density of a system is that the mean
path l f should be greatly smaller than a minimal clearan
between the wallsDs. Hence, one should expect that larg
distance between walls and higher density give smaller e
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FIG. 4. Thermal conductivityl of argon.~a! MD simulations and different theories calculations in the same points as in Fig. 3~b!. ~b!
l5l(T) at r52rcr , different theories are compared with experimental data.~c! l5l(T) at r52rcr ; ~d! l5l(r) at T5298 K. All
experimental data plotted in this figure are taken from@28#.
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in the kinetic equation. This error is introduced by the lim
ing condition for interaction timeutu→10 @30#. On the
other hand, next to the theory error there is an error cau
by a deviation of the multistep potential of interaction from
real one. Real potential is smooth and the error is sma
when the clearance between walls is smaller. In the li
~8.22! this error is the smallest. One can observe that th
two types of errors have opposite tendencies. So, to apply
obtained kinetic equation to systems with real smooth in
particle interaction potential in view of a geometry of MS
one should find a compromise solution. First of all, MS
should approximate real potential, better of worse. At
same time the conditionl f!Ds must be obeyed. This raise
the question of optimal dividing of a real potential of inte
action into a multistep one. Density decreasing makes imp
sible to obtain the Boltzmann analog from the conside
equation in the limitn→0. Let us evaluate numerically. Sup
poses0 is the position of a hard sphere,Ds is the minimal
-
d

ed

er
it
se
he
r-

I
e

s-
d

distance between walls,smax.2s0 is the location of the mos
removed attractive wall. It is well known from the theory o
rarefied gases @1,31# that the mean free pathl f

'1/&pnsmax
2 . In dense gases it decreases in the first

proximation byg2
eq(s0

1) times whereg2
eq(s0

1) is the contact
value of binary equilibrium correlation function@23#. Thus,
l f'1/4&pns0

2g2
eq(s0

1). Introducing the dimensionless den
sity D5 1

6 pns0
3, one obtains:

Ds

s0
@

1

24&pDg2
eq~s0

1!
5g. ~10.1!

For D50.25 andg2
eq(s0

1).2.5 one obtainsg'1/25. As far
as initial preconditions of the theory are not obeyed, then
the limit ~8.22! the theory error is maximal. However, kinet
equation transfers then into the equation of the kinetic me
field theory@19#.
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