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Kinetic equation for liquids with a multistep potential of interaction:
Calculation of transport coefficients
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Using the boundary conditions method, we find normal solutions to a kinetic equation proposed recently by
us [Physica A234, 89 (1996)] to describe nonequilibrium properties of classical liquids. As a result, explicit
expressions for the transport coefficients and macroscopic conservation laws are obtained in the first order for
gradients of hydrodynamic parameters. In some particular cases, these expressions are reduced to those cor-
responding to the well-known Enskog, Davis-Rice-Sengers, and mean-field kinetic theories. It is demonstrated
that our approach allows an accurate reproduction of experimental and molecular dynamics data for the
transport coefficients of liquid argon in a wide density-temperature range.

PACS numbgs): 05.20.Dd, 05.60-k, 05.70.Ln, 52.25.Fi

[. INTRODUCTION cannot be proved. But some recipe of construction of entropy
functional for the SET theory was suggested in REIO—
In 1872, Boltzmann has proposed a kinetic thefdyfor ~ 12]. For the revised versions RET,8] and RDRS[9] the
the description of nonequilibrium processes in dilute gase§xact entropy functional was constructed andththeorem
and proved théH-theorem. However, until now there is no was proved. Furthermore, the RET kinetic equation has been
consequent kinetic approach for dense gases and liquids wi@Ptained successfully within the frame of some theoretical
a realistic interparticle potential of interaction. The deriva-Scheme, which is analogous to Bogolubo}2§, but uses a
tion and solution of kinetic equations for dense classical sysMedification of boundary conditions. The last one takes into
tems still remains an important and unresolved problem jficcount the local conservation laws in the solution of the
nonequilibrium statistical mechanics. BBGKY hierarchy[13].

In order to apply the results of the SET theory to real
In 1946, Bogolubov had suggested an apprd&gtio the .
problem of derivation of kinetic equations which allows asystems, Enskog suggested to change the hydrostatic pres-

o . o s . sure of a system of hard spheres to a thermodynamic pres-

g(ce)rl]tiﬁgﬁitlggu;c;iohr:g:(frrreizgilggst.o \;\gtrg't?] ;hgzr;?(?rz%o;h?sure of a real system. Having this assertion in mind, Hanley
. ) . ) Ut al. [14] built a kinetic theory called later the modified
the power series with respect tg density. But, it was S,Oorfinskog theory(MET) where the hard sphere diameteris
realized that the second- and higher-order terms are divefjefineq via the second virial coefficient of the system equa-
gent[3]. The reason for suph a divergence can be explameﬁOn of state. In such a wayr becomes dependent on tem-
by the fact that the expansions used were based on dynamiggrature and density. Using different equations of state: BH
of isolated groups of particles in an infinite space without[15], \WCA [16], MC/RS[17,18 and others, one obtains the
taking into consideration the media, i.e., all others particlesorresponding versions of MET.
in the system. In contrast to systems at equilibrium, the ve- |n the kinetic mean-field theorfKMFT) [19], along with
locity correlations in a nonequilibrium state include long- the hard sphere interaction potential one considers also some
range correlations between particles. This does not allow temooth attractive “tail.” It is noted in Ref20] that in this
generalize the Boltzmann kinetic equation to high densitiegase the quasiequilibrium binary correlation function of hard
within such expansions. spheres should be replaced with one which takes into ac-
A successful empirical kinetic theory of dense gases wasount, explicitly or implicitly, the total interaction potential.

developed by Enskog in 1922 at least for the case of hardhe main conclusion of KMFT is that the smooth part of
spheres(standard Enskog theory SET4]. His arguments interaction potential in the first approximation in gradients of
were similar to Boltzmann’s. In 1961 Davet al. [5] sug-  hydrodynamic parameters does not contribute explicitly into
gested the Davis-Rice-Sengdi3RS) kinetic theory, where transport coefficients. There is only an indirect contribution
the so-called “square-well” potential of interaction is con- via the binary correlation function. Its dependence on tem-
sidered. DRS theory is an analog of the usual SET theory foperature is defined by a smooth part of the interaction poten-
a specific type of interaction potential. Here an attractive partial.
of real interaction potential is approximated by some finite In our recent papel21] we suggested a kinetic equation
attractive wall. A revised Enskog theofRET) [6—8] and a  for systems with a multistep potential of interactidiSPI).
revised version of DRS—RDR®] have been obtained. The This potential consists of the hard sphere part and of a sys-
necessity of the revised versions could be explained as fokem of attractive and repulsive walls. Such a model is a gen-
lows. (1) Kinetic equations of the initial versions of those eralization of SET(RET, MET), DRS (RDRS and KMFT
theories cannot be derived consistenilg) The exact en- theories. We also proved thd-theorem for this equation.
tropy functional cannot be constructed, hencelhtheorem  However, a normal solution has not been published yet. In
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this article, going to the schema of construction of normal 4
solutions of kinetic equations with the help of boundary con-
ditions method22], a normal solution to the kinetic equation &
has been obtained and the integral conservation laws linear

in gradients of hydrodynamic parameters have been derived.

The expressions for such transport coefficients as bulk and
shear viscosity and thermal conductivity are calculated for

the case of stationary process. We also consider limiting
cases for this kinetic equation. For specific parameters of
model interaction potential in shape of the multistep func-

tion, the obtained results rearrange to those of the GHIT,

MET), DRS (RDRS or KMFT theories by means of the &
standard Chapman-Enskog metH@&8]. In view of this, the

theory can be considered as a generalized one which in some
specific cases arrives at the results of previous ones and in &
such a way displays the connection between these theories. GO, O, G, G,
At the end of this article we present results of numerical
computation of transport coefficients for argon and their
comparison with the available experimental data and MD FIG. 1. Multistep potential of interaction with* =1, m* =3.
simulations.

v

wheregd=g3(F,,F,|n(t),B(t)) is defined in the usual way
II. MULTISTEP POTENTIAL OE INTERACTION: from the maximum of the entropy functional and in its turn is
KINETIC EQUATION the functional of local values of densityr;;t) and inverse
temperaturgd(ry;t)=1/(kgT), kg is the Boltzmann constant
and T is the local temperature. I(2.3) T is an operator
which describes interaction of two particles in presence of

Let us consider a system bfclassical particles in volume
V when N—o and V—o, provided N/V=const. The

Hamiltonian of this system reads: MSP!:
N p2 N
Hy=2 5—+2 @;. (2.9) LT
=rem g T=Tot > T+ 3, Ty 2.9
i=1 j=1

Our purpose is the most detailed analysis of nonequilibrium

processes in dense systems. To do this let us define MSPI

eij=e(|fi—Fi[)=¢(|Fj[)=¢(r;;) in a form of the multi- ﬁgaé] do oGO(§){S(T1— T+ 6o )Ba(6)
step function:

00} rij<0'0,
@ij=y &k Ok-1=Tij<0%; k=1,...N*, (22  The last expression is nothing but the operator of hard
0; ow<ry. spheres interactiof25], ¢ is the unit vector directed from

the second patrticle to the first ongs=v,— v is the relative
HereN* is the total number of attractive and repulsive wallsVvelocity. B,(&) is the velocities shift operator as in the
except the hard sphere one. For our convenience we distimiassical mechanics of elastic collisior; =Ek:b,c,d1’|ik
guish systems of attractive and repulsive walls. Let one havis an interaction operator at théth repulsive wall;
n* repulsive walls, separated by the distanegsand having
heightsAe);, i=1, ... n*; andm* attractive walls with the
parametersr,; andAe,;, j=1,... m*, respectivelyoy is e
the location of the hard sphere wall. It is obvious tndt R
+m*:N*, Asli:‘gli_gli+l! ASerSrj+l_8rj . In such a
way the parametersg, n*, oy, Agj;, m*, o, Ag de-
fine the multistep potential of interaction completdsee

Fig. 1).
Going similarly to the derivation of the kinetic equation oo ~ "t~ =~ ] " T - — - -
of the RET theony[7,8,24 and taking into account the sys- —r— W b
tem of attractive and repulsive walls, one obtains the follow- ~—— %" ¢ ——r—
ing kinetic equation: Ay OErj
“dl” “d ”
a9 o R . - S
E_Fvlﬁ)fl(xlvt)_j dxpTfa(Xg,%25t), (2.38 v __L___ - -
2, Oy J, Orj

fa(x1,%2:1) =093f1(x1; D) F1(%551), (2.3b FIG. 2. Types of possible interactiofschematic drayv
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Ti=Zkob.cdlrjk IS an interaction operator at théh attrac- Bl k(&)Y(51,52)=Y(51Lk,5}k) (2.8
tive wall; a,b,c,dare types of possible interactiofsee Fig.
2). whereY is some arbitrary function of;, v5.
Type “a”
Ti = o2 PP I .
T:'Ij = mr.jf do (Tgﬁlrljk(...){5(rl Fp+ 0'a'|r.j)Blrljk(0') L=+ 5(5G); (2.98
— > ~ *+
_5(r1 I 0'(T|r|j)}, (26) Jé=172—6'(5'§), (29b)
where type “b:”
Oi,=0(—0cQ), 2.7
ib=0(—cg) (2.79 o e ke,
B ihe, U =01+ ol oG+ \/(0§)+ - ;. (2.10a
0”050 og— m , (27b)
oy 1 (. . o 4A8”
4he, =01t 50 od—\/ (@) + el (2.10b
9|id59( - —ffg) 6(5g), (2.79
type “c”
brjp=0(53), (2.79
> - Al A A N\ 2 4A8“
. 4, v1|=v1+20' od—\/(o0)"— ;o (2.11a
brjc=6| —0g— m |’ (2.79 m
1 4A ¢,
4A8' —>m_—>+_A 56+ A N2 r] '
H,J-d50< Vot sglo-59. (79 umuat 0| 00+ N (99 ) (2410
Expressiong2.7) are nothing but conditions for specific type type “d.”
of interaction[ 6(z) is the unit step functioh " o
Bi(¢) is an operator which acts on velocities and v1|r=v1+0(crg)§vi. (212
changes them in accordance with the interaction of a specific
type at each wall: Now kinetic equation2.3) can be written explicitly:
g .4 1S A A o Y A RPN Y > A+ -
E"’Ul? f1(Xp;t)=0¢ | d6dv,0g0(6G){fo(F1, 01, 1+00g ,0;;1)—Fo(Xq,F1—Fog ,U2:t)}
1
n*
+|21 O'ﬁj da’dljza’g) 9(-5‘@){f2(rl,5;{| ,r_)l+a'0'|_:— ,Jg| ,t)—fz(Xl,Fl—frO‘ﬁ ,Jz,t)}
~ = 4A8” = > = ~ —  =m = ~ + -
0| 09— m {fo(r1,07) M1t 0oy 0550 = FolXy,F1 =G0y ,u250)}
A 4A8” ~ 2 2> A+ = > A+ >
+6(g)6 m 99 {fo(F1,07 F1+ oy 0y 1) = Fa(Xe,F1= G0y vz}
m*
+121 cr,zjf dodo,ag| 0(ag){fa(ry,07, ,F1t G0y ,17’2’r;t)—f2(x1,r*1—c‘m,+j U2}
Ny 4A8rj > sm > A+ =m > A - >
+0| —og— m {fo(71,07, 1t G0y ,05 1) = fa(Xq, 1= G0y 0250}
= 4A8ri A = > s > A = snn > A - >
+60(—a5g)0 - +0g {fo(F, 07 ,F1t 00,0 ;1) = fa(Xy,F1— 00 ,Ua50)}
n* m*
=Je(fr,f)+ 2 (J.ib+Jnc+Jnd>+j§1 (Jrjp+ Jrje + Jrja), (213
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Je denotes ordinary Enskog collision integral of hardand

spheres.
One can draw the following conclusions regarding the d o d
form of (2.13. In the absence of attractive and repulsive ﬁ_ﬁﬂjyﬁrly'

walls (Ag;=0,i=1,...n*, Ag;=0, j=1,... m*) this

kinetic equation transfers to that one of the RET thd@t8].  The equation for interaction energy density is obtained auto-
In the presence of only one f|n|te*attract|ve wall€; =0,  matically by differentiating the expression far with taking
i=1,...n% Ag;=0, j=2,... m*, Ag;#0) one ob- jnto account the conservation laws fo(f;t), G(f:t), and

tains the kinetic equation of the RDRS the¢8}. Moreover, , (3.9). Stress tensoP,; and heat flow vector consist of
it can be shown, that in the third special case when the set gfe kinetic and interaction parts:

walls is merged with some smooth potential and Ao,

=0|i—a'”,l—>0,i=1,...,n*—l, A8|i—>0, n*—>00, AO'”' P :Pk +Pi
=0y 11—0—0,j=1,... m*—1, 8s;;—0, m* -, and ap” T ap T ap
A8|i , qa:ql;+qi¢1 . (33)
g Pilan),
l In its turn, the potential parts consist of the hard sphere term
Ag.. and components caused by the set of attractive and repulsive
r ’ .
AO'rlj —¢i(ay)), walls:
n*
the kinetic equation2.13 transfers to that of the KMFT P i i i i
theory[19]. Pag=Piapt izl (Pi2ap™ Pizag™ Pisag)
[Il. MACROSCOPIC CONSERVATION LAWS: m* i i i
THE ZEROTH APPROXIMATION +j21 (Pj2apT Pizap™ Pjaap):
Let us introduce the following set of hydrodynamic pa- (3.9
rameters: particles number densit§r;t), hydrodynamic ve- n*
locity G(F;t), densities of kinetiav, and interactionw; en- 0h=0hat > (Uizat Uigat Ulag)
ergies: i=1
m*
n(r*l;t)=f du,fi(xq;t), (3.13 +j21 (G201 Qjzat Ujaq)
S ) — > . U1 where indices 1, 2, 3, and 4 correspond to the types of inter-
= f —_—, A . 1r .
u(ry;t) f dv2fa(Xs51) n(fy;t) (310 actions “a,” “ b,” “ ¢,” and “d,” respectively. Now let us
write down the expressions for the stress terigy and heat
. dif c? flow vectorq, in an explicit form:
wk(rlut)_f U2 1(X1.t)m, (3.19
1 Plfyﬁzf dlflfl(Xl;t)mClaclﬁ,
wi(rl;t):f szn(Fz;t)g%(Fl,len(t),B(t))%d)(lflzl)- (3.5

(3.10

Herec(r;t)=u(r;t) —v is the heat velocity. We also intro-
duce the set of interaction invariant¥={m,mgs,3moy?
+ ¢(r19)} [23]. Multiplying initial kinetic equation(2.13 by
each component of the vectdr and integrating with respect

mc}
qlfy: f do,fq(Xq;t) > Cia:

: 1
=50 | 40100,06 5G050) (0], - 1107

tov,, one obtains the equation of continuity, the equation of 1 . L .
motion, and equation of kinetic energy balance, respectively: X fo d\fa(Fi+Noog ,U1,F1 NGOy —G0g ,U2;t),
1dn d (3.6
ﬁa—— —arla u,, (3.23
ol [(e)?
du 1 9 q1a=§m00J dvdv,do ogo(og) 5 50
S=—— ——P,g, (3.2b
dt mn or g .
da)k 1 d d X J'O d)\fZ(F1+)\a—Ug '171"?1"')\6'0'5_6'0'5 !JZ;t);
— K= P U.|, (320
dt mn arlaq Por g (3.7
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P ag)(vljltla_vla)a-ﬂ

1205~ 2m0'|,f dv,dv,dG ogo(—aog

1
Xf d)\fz(I?1+7\6'0'|T ,171,F1+)\6'0'|T
0

—Gay at), (3.9

; 1 R .
Qize= zmgnf dv,dv,do ogo(—og)

1
XJ d)\fz(rl+)\a'0'|T,61,F1+)\&U|T_&U|T,172,t),
0

(3.9
30— 2m0'||fdv1dv2d6'?f§
. 4Aey\ R
Ug T (U1|a_Ula)0'ﬁ
1
Xf dxfz(Fl+A&U:,Jl,Fl+X&U:
0
—Goy ,Up51), (3.10

i 1 3 N I o 4A8|i
qigazzmo'”j dvdv,doog6| 6g— -

2 2
(ci)® cf Agyl,
O-Q

2 2 2m

1
XJ d)\fz(F1+)\&U|J|r ,171,F1+)\(}0'|T_(}0'|T ,52;t),
0

(3.1)

1
X(v;;la_vla)a-ﬁfo d\ fo(Fi+ NGOy 01,7

+>\fmﬁ—fmﬁ JUost),

(3.12
: 1
a5 Mo | 46,0005 590(59)0

4A8|i ,\_>>

N"m ¢
CII//
><<( 1l

AN
5 = crajo AN Fo(Tr+ NG i1,

+)\6'U|T—6'U|T U t). (3.13
Expressions foP|2u4, Pj3ap. Pjaas: Uj2a+ Ujzas aNdQja,
look similar to (3.6)—(3.13 Piz.5, Pizagss P,4aﬁ q,2a,
Qiza s andq,4a, respectlvely, at formal replacing;; —og,

00— —00, Uy —U1r, A8||—>A8r]
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At the end of this section we consider the macroscopic
conservation laws in the zeroth approximation. Let us sup-
pose that the one-particle distribution function in this case is
equal to the local-equilibrium Maxwell one:

fi=11(xy;t)

m 3/2
:”(rl'”(zkaT<r1;t>) exr{_zksnfl;t) '

mﬁ(ﬁl;n]

(3.19
Neglecting any spatial gradient one obtains
93("1, T n(Fy51), B(F1;1))
~92q(r12' (—2 ;t).ﬁ — Jt)).
(3.15a9

1 1
fdxfz(xl;xz;t)zf dAFO(..)
0 0

=954 a|n, B) F 0 (xy ;1) F O (F1,0,;10).
(3.15p
It is well-known from the equilibrium statistical mechan-

ics[26] that any sharp jump of interaction potential results in
a corresponding jump of binary correlation function:

9540 [n.B)
W ZGXD[ﬁASH}, (3163
954a;;In.B) 5165

gty np)  ORAAeah

Substituting these relations int8.5—(3.13, one obtains
thatP,z=pd.z, wherep is the hydrostatic pressure wh|ch
consists of the kinetip* and interactiorp’ parts;q,=

p=p*+p,
pk: nkBTv

2
p == ankBTA

3 (3.17

n*

A=0892(05)—§1 onga( oy ){e  PAmi— 1}

m*

" ;1 Uf’j gz(o_rfj){e*BAsrj -1},
g5 =g50(n(F1;t). B(F1;1).

Then, starting from(3.2), one has the conservation laws in
the zeroth approximatiofEuler laws:
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1dn_ au 318

ndt any (3.183

dﬁ_ 1 9P 318

9t mnary (3.180

dwk_ 1 (?L_j _ 318

Gt mnPar “Tompe (3180
0= . 1 > S\ e
o; (rlvt):ﬁ dfyon(Fy;t) g5

X (|Feal;n(Fy;t), B(FL;t))P(|Feal).
(3.189

IV. THE PRINCIPLE OF CONSTRUCTION OF HIGHER
ORDER APPROXIMATIONS: NORMAL SOLUTIONS
BY MEANS OF BOUNDARY CONDITIONS METHOD

Let us consider initial kinetic equatiai.3) [or (2.13)]

J d ~
(E"‘Jlﬁ) fi(xqgit)= f dXTfo(Xy X 1) =J3(f1,f1),
(4.7

where the collision integral(f,,f;) consists of the usual
one of the RET theory-J3¢(f,,f;) and collision integrals
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expression. This approximation should be of the same order
as within the frame for the solution of total kinetic equation.
In such a way, let us expand functiorig and gJ in the
vicinity of f; into series in deviations go. This results in:

2 =Jo+J%, =k21 I, (4.5

o

> I,

M s

Ik: 0+|*, |* = (46)

k=0

wherek is the expansion order. Al, here are local func-
tionals of f;. We also use the following notation( 5f )
=J(f(9, 5t )+J(5f,f?) for the linearized nonlocal colli-
sion operator. We have similar expansion for this operator—
the relation(4.6). Herel o( 5f ) =Jo(f{?, 8f ) + Jo(5F, ) is

a linearized local collision operator which coincides with
that of the usual Boltzmann kinetic equation within a factor
of g5 og) if one neglects the set of walls except hard sphere
wall. Then equatiori4.4) transfers to

9 — (0)
otrest—1o(5f)=— 5 f +I(FO 1Oy 1% (1)

+J(of,6f ) —

1%
Ulﬁ of. 4.7

demanding on interaction on each wall. Such a structure Of'o solve this equation by means of the boundary conditions

J(fq,f,) is caused by the structure ﬁf-operator

n*

Julﬁg=34fbn)+g;[mm+mm+Jw]

m*

+;1 [Jrjo+ ric+ Jrjal- 4.2)

Going to the schema of construction of normal solutions to

kinetic equations with the help of boundary conditi¢@g],
let us introduce in the right-hand side @f.1) an infinitely
small source—¢(f,— (), wheree—0:

d
ot

—FU = (9> fo(xq;0)=J(fy,f)—e(f,— ). (4.3
J

For deviationsf = f,— (%) this equation reads:

e

d
ot

+U1a1+? =

of

e FO4 3RO 1)

at arq

+I(F 8f )+ I(8F,£9)+I( 55, 55).

First and foremost it should be noted that the collision inte-

gral in the usual Boltzmann equation is loc§] {s a function
of the same Cartesian coordinafg). In our case the
J(f,,f1) is a nonlocal collision integralf, is calculated in
pointsi, andf,*+ go, integration with respect té- (surface
of unit spherg is performed. As a result, in one way or
another, we will find solutions in some approximation, and
there is no need “to draw” the whole nonlocal collision

integral. It is much more convenient to use its approximate

method, we need its integral form. To this end let us intro-
duce operato&(t,t") with the following properties:

%S(t,t’)=loS(t,t’), S(t,t)=1. 4.9

Using the limiting condition [im&f(t)=0 one obtains:

to—o

t _ D
of(t)= fﬁmdtree(t t)S(t,t,)[afg_o)+J(fg_o) ,ng))

.0
— Uy Of

*
1% (5F )+I(5F,8F) a7

4.9

t’

Equation (4.9 is completely ready for the iteration proce-
dure. This procedure can be organized as follows:

t -, D
5f(k+1)(t):f dt’e<t _t)S(t,t') a1:5-0)

+‘](k+l)(f5-0) !fg_O)) +1 * (k*l)( (5f(k))

+ kD550, 5F ) -5 —5f< } :

t’

(4.10

where

k+1

J(kJrl): 2 Jk/,
k'=0
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k+1

= .

k=0

(k+1) —

Each K+ 1)th step uses conservation lawskth approxi-
mation.

V. ONE-PARTICLE DISTRIBUTION FUNCTION IN THE
FIRST APPROXIMATION

The expression for the distribution functidp in the first
approximation is obtained if one puts=0 in (3.5 and takes
into account the equalitgf(®)=0. Then we have:

t !
(1)(t):f dtree(t —t)S(t't/)

D
x| 5 7+ Jo(FL 97+ 3,(F17 1)

t!
(5.1

It can be shown that

Jo(f

f9)=0. (5.2)

Making the expansion up to the linear terms in gradients of

hydrodynamic parameters

r*1+r*2.
Tat)aﬂ

Pty
2'%

(5.33

g3(ry ,F2|n(t),,8(t)):g§q< ri2;N

8
K ||—+7T2n Ullgzo(o-r])zk T

3
X

s® 1
{4+ ﬁ(502—952)+ ﬁ(v

1 $ 1
__J’ dizexq_hz—vz}ha UZ__+_(UZ+SZ)3/2 ’
9 v>S v v

m 3/2] 1
2k T)

8
Laﬁll = +7T2n \fO'H gz"(m.

3

s 1
X |4+ 5 (5074657 + 5 (v7+5%) P 4v?

652)]

s® 1
X1 4+ ¥(5v2—982)+ ﬁ(vz—

3

1 s> 1
-3 d%, exp{—h2—v2}| 02— —+ = (v2+)32| 5
9 Ju>s v v

KINETIC EQUATION FOR LIQUIDS WITH A . ..

S
4+ 5(5v2+632)+ 5(02+32)3’2(4u —6s?) | —

2)3/2(4U 2+ 652)

—Oefszf dx, exp[—hz—vz}(vavﬁ—

30 v>S

52)3/2(4U2+ 652) +
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J
1

and taking into account the conservation la@s18, one
obtains after very unwieldy calculations the following:

D d
B (O BT ( BT (U N e
thl J1(f37, 77 K“arlaln L

aﬁﬂuai
(5.4
3 plm& s
— _ (0 e _Z
Ka= =10 1+ 5 5T [ZkBT 3|C1e
n* m*
+ 2 Kt 2 Karj s (5.5
i=1 =1
2 plm 1
— _£(0) - . __x2
Log 1|1+ 5 nkgT |[KgT C14C1p 3015(14
n* m*
+I:El Laﬁ|i+j21 Laﬁrj ’ (56)
where

1
30 deZqu hZ_U }h,B( avﬁ 3 5&[;’)

! d%, exp{—h?—vZhg| v v —3026
30 bos 2 B\ Ya¥p 3 aB

fdx exp{— hz—vz}ha(v __+_(vz+sz)3/2)

(5.7)

1
2
§U 5&,3)

1
d)_zz eXp[— hZ_UZ}(UaU'g_ 51)25aﬂ)

3

S 1
dx, eXp{—hZ_UZ}( v2— ;4— ;(U2+SZ)3/2) 5aﬁ

u- (5.9
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Here
B (BAGH)M, o m 1/2_)
[(BAer e %=y 0 69
1 m 1/2
UZE(kB—T) (02 Cl), (5.103
.1 m 1/2
h= §(|(B_T) C1+Cy) (5.10b
Then
f=fV=f2+51 (5.113
t !
5f(1>(t)=f dt’e’ "Us(t,t’)
Xi{K,=—=——InT+L,g—u,
N 1q Parig @),
(5.11H

It can be shown thafdg,5fN(F,,5,;t) ¥ =0, i.e., the hy-
drodynamic parameters(ry;t), G(rq;t), B, w; are com-
pletely defined by the local one-particle distribution function

(9 (3.14.

VI. CONSERVATION LAWS IN THE FIRST
APPROXIMATION: STATIONARY PROCESS

First, let us calculate kinetic parts of the stress tensor and
heat flux vector. Substituting one-particle distribution func-

tion f; (5.11 into (3.5 one obtains:

p§<é>:pk5aﬁ+fdt'ef“’*‘)lvlk(t,t’)[Saﬁ]v, (6.

s J N J 2 0 5
= u Ug— = u ,
B, drgg P Bary,
(6.2
"“)—f dt’ et~ t)Lk(tt) InT| ,
la

t’

where cores of kinetic parts of transport laws read:

1
Mk(tat’)z 1_0f dl})lmClaCJ_ﬁS(t,t,){LaB}t!, (63)

1 m
Lk(t,t'>=§f dﬁlclagat,w{mv- (6.4

To calculate the potentiaﬂinteractior) parts of P'(l) and
g™, the expression [gd\fy(Fi+\do, vl,rl-i-)\a'a'

—00,0,;t)=2;+2, should be expanded into series in, first
of all, inhomogeneity of distribution function, then in devia-
In both cases one should keep only the linear

tion &f(4).
terms in gradients. Calculations give:
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fg_O)(Flyljl;t)
fO(F,,0,;t)

(6.5

1 (9
zl=§ agg"(cr)f(f’)(xl;t)fﬁo)(rl,vz;t)ff{;?l'”

2,= 954 o) {FV(x1;1) STI(F1,55;1)

+ 8tV (x ) FO(Fy 0250} (6.6
z, is the expansion of ”) in inhomogeneity(the inhomoge-
neity of 5f(*) is considered as a negligibly small quankity
z, is the expansion in deviatioéif *). Then, general expres-
sions (3.6)—(3.13 with taking into accoun{6.5 and (6.6)
transfer to

Pily= | dtres (e[S,

4 6 d
9 \7kaB [ aﬁ+ 0_'r 5aﬁ]1

(6.7)
q3=f dt’ee“/“)Li(t,t’)[ InT
ﬁrla t/
2, nkgT aT
—§n kB THZ ar, , (6.8

whereM', L' are cores of the potential parts of transfer laws.
Their structure is very complicated. To save space, these
expressions are not presented here in their explicit form.

n*

H2=oég§°<oa>+i§1 otga(o) e PAaE(BAe)

+]_§1 o950 e PAIE (BAE), (6.9
E(s)=e°— 3 s—KJ(s), (6.103
K;(s)=2f°odx e X \X2+s. (6.10D

0

In such a way, the transport laws in the first approxima-
tion are in an integral form only partially. They are in an
integral form completely in the case of solution of the usual
Boltzmann kinetic equatiof22]. There are also local-time
terms[second terms i§6.7) and (6.8)], caused by the inho-
mogeneity of f(lo) and, therefore, not sensitive to the
“memory” effects.

In the stationary case, the operatgrdoes not depend on
time explicitly:

S(t,t7)=elot=t),
Then

(1) — eTn—loT
of Jdre e [ G

— U, ¢,

(6.11

J
“Borg
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7=t'—t.

Let us define the following quantities:

d
aa(T)Ze_'OT[Ka In T}, (6.12a
a1,

J
—alo7
bog(r)=€""0 ‘Laﬁ <9f1;;ua]' (6.12h

with the initial conditions

J
a,(0)=K, —InT, (6.120
I 14

bas(0)=L u,. (6.129

“Borg

It can be shown that the operatgrhas the same mathemati-

where

(= 030510%) [ 05,06 69050 G105

X{ 1+ po— Pp1— P2}, (6.19
(0= 0050y [ dod sG0(—60) 1050 10(5)
X{ 1+ Ppo— P1i— P4}, (6.20

[4A€;
Iic<¢1>=oﬁg§"<oﬁ>fdﬁzd& ff@"(?f@— mﬂ>

X TGO b+ bo &5 — B3},
(6.20)

cal properties that the corresponding operator of the usualid(cﬁl):crﬁgg“(aﬁ)f d5,dé &GH(&QM( [4A € —&Q)
m

Boltzmann kinetic equation:
lo(f W) =0, (6.133
lo(§)=NE N<O. (6.13h

Then, for 7<0, N\ na=max\}:
lax(7)<laq(0)]exp{Nmax}, (6.143

||ba,8( 7')”$||ba,8(0)||eXp[)\maxT}v (614b

and

lel= [ dBarr@1-22

Using last transformations, equati¢®.11) transfers to:

0
sft= |imf d7 eTa,(7)+bys(7)]

e—+0
0
Ifiwdr[aa(r)-i-baﬁ(r)], (6.15

or, introducing f M= ¢Mf(” it can be rewritten in the
following final form:

(1) J
¢ ZAQEMT-FB u,. (616)

ap Tw
A, andB,; satisfy the integral equations like:

IO(Aa):Ka1 (6173

lo(Bag)=Lags- (6.17b

Operatorl; has the following structure:

* *

n m

|0:|a+2:1 {Iib+|ic+|id}+j§=:l ip T et lial,
(6.18

X (G FO@ )b+ o= 1 — 37}, (6.22
p(0) =405 [ d506 6601 (G105
X{p1+ do— &1 — d5i}, (6.23

_ o . 4A €.
(=305 | dvzdoage( ~ag- [

X FOG) (G ) b1+ o= b — Sy} (6.24

lia(1) = 07959 07)) f dv,daogo(—ag)

< 0| N2 56 1013 10)
X{p1+ b= 1 — 3}, (6.29
P1=¢(I1,01;1), (6.26a
Do=d(I1,05;1), (6.26b
¢1}E¢(F1,5I|r;t), (6.260
¢2;E¢(F1,5’2*.r b, (6.260
=", (6.260

In the case of SETRET) theory, the linearized local in-
tegral operatoty=1,, whereas in the case of the Boltzmann
kinetic equation there is the usual Boltzmann’s linearized
operator and , tends to that one in the low density limit:
_>01 ggﬂ(a.ar)_ﬁl_, Ia_>| B-

In such a way, to find one-patrticle distribution function in
the first approximation in stationary case one should analyze
integral equation$6.17) and solve them.
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VII. SOLUTIONS TO THE INTEGRAL EQUATIONS

To find quantitiesA, and B,; we have set of integral
equations (6.17. Let us define the dimensionless self-
velocity: W= (m/2kgT)¥%. Using the property of isotropy
(in the velocity spaceof the operatot and structures df ,
(5.7 andL,z (5.8 solutions to(6.17 can be presented as
follows:

Aa:WlaA(Wl)i (71)

Bows=B1apt Baap(W1) Sap, (7.2)

1
Biag=|WiaW1p— §W%5aﬁ Bi(wy).

The structure ofBy,z is caused by the structure &f,z:
Log= LlaB+L2aﬁ, where in L,,; are all terms with
(W1,Wi5— 3Wl dap), IN Ly, are all terms withd, ;. Then

IO(WlaA(Wl)): Kaf ’ (733

1
|o( (Wlawlﬁ_ §W§5aﬁ) Bl(Wl)) =Liup, (7.3D

(7.39

Following the standard Chapman-Enskog metfg], let us
representA(w,), Bi(w;) and B,(w,) via the Sonine-
Laguerre polynomials

lo(Ba(wq))=L,.
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port coefficients(practically for all types of interaction po-
tentialg not exceeding 2%. Thus, we have:

A(w;)=aPsglwd)=a® (5 -wi), (7.78
By(wy)=b{¥SO(wf) =b, (7.7b

B2(wy) =b5” Si(WY) = b (= wi+ dw),
(7.709

and

lowy,a (3 —wh))=K,, (7.89
lo((WiW1g— 5 Wid,p) D)=Ly, (7.8b
lo(bY (8 — 3 Wi+ 3 wi)=L,. (7.80

Mult|ply|ng these equations byvlasg,z(wl) (W1W1g
—iw? Oap) S{8)(w?), respectively, and integrating with re-
spect tow,, one finds:

JdW;K oWy, S53(wW2)

de1|o(W1aS(3}2)(W1))W1a53 (W 1)

al=

(7.9

- 2
JAWLL 10 g(W1 Wi g— 5W38,5)

b0 —
- 2 2 1
JdWqlg(Wq,Wq— %Wlaaﬁ)(wlawlﬁ_ %Wlaaﬁ)

1

m (7.10
. '(n+m+1)
T(z) = —2))- - - , 7.4
(2 ;Zo( GG e o0 Jdwi LS (w?) .10
e., in the form JdWigl o(S (WD) SH(WS) '
oo First-hand calculations faa* andb(® give the following:
Alwy) = 2 a™s{R(wi), (7.58
= G Bn(1+2anA)—2Jmn?D,
alt= , (7.12
» 8V2mn2\* + £D,}
By(wy)= 20 bi™SID(w3), (7.5b
" b(® 5n(1+ %WHA)—%@nle( m )1’2
1 = y
- 8V2mn2\*+ 5D,p | 2KeT
By(wy)= 2, bS"S{R(w). (759 (7.13
Fredgolm condition puts limitations on expansion coefﬂ—w ere
cientsa(™ andb(™: the correction in the first approximation n*
doegs (O)no(tl)_contrlbutg to hydrodynamlc parameters Dl:_z 029 o ) Ase SSH(AS)
Jdw, ;7 ¢'Y=0. By this means: =
(0)— m*
a'”’ =0, (7.6a _
+,Zl 020590y Asie” SSiH|(AS)),
b(®=0, (7.6b
n* m*
(1) — _As _ _As
b'*=0. (7.69 D2=iz1 ot 940y )As?e A5'+j21 o595 oy AsPe 4,

It is known that the Sonine-Laguerre polynomials con-
verge quickly. Therefore only the first nonzero term is con-
sidered in expansion. This is as a rule and we will follow the
procedure. Such an approximation gives the error for trans-

AS,ZﬁAE”, izl,...

Asj=BAe;, j=1,...
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* 1/2
1 . _3ks 5 [2KeT 4 (1)
M =5 00g3iog) + 3, ofgstoi e E(As) MmN L+ g VmnHy a,
a (8.6
m*
+Zl U?jgga(orj)eASiE(Asj) , where
g b©=—p,
T 3
Hs(Z)=£+eSF =.Z], (7.14 *
’ ’ leﬁ/\_E g5t o ) Asie 4
F | I |
I'(r,s)=JZdx X 'e ™ is the incompletd -function. Since 2 =1
b$?) does not contribute into transport coefficients, we did Jm As?? 1 5
not calculate it. X 2 3 +§eASiF<§,ASi)
In this manner, one-particle distribution function in sta-
tionary case reads: m*
3 € - a—As;
=101+ 60, (7.158 "2 gty ase
3/2
P Jr Asf? 1 (5
¢(1):a(1)(g_W%)W1ao—,rl I T+ b3 (W1 oWy 5= W7 5,p) X[T_ 3 T3 T 2As [ 8.7

y d b()(15 _ 524 Lyt d —_ Thus, the problem of transport coefficients for specific inter-
0r_13u”+ 2 (F_EW1+EW1)(9r_MUav (7.18D  action p.otential(2.2). in our approach is solved. Finally, let
us consider some limiting cases.
wherea™ andb(® are defined by7.12) and(7.13, corre-
spondingly. A. Hard spheres potential

VIII. CALCULATION OF TRANSPORT COEFFICIENTS: Ag;=0, As=0, i=1,...n%,

SOME LIMITING CASES
) Aerj=0, ASJZO, J=l, e ,m*. (88)
General expressions for the stress tensor and heat flux
vector for nonstationary process were obtained in Sec. Vlin this case model MSP(2.2) transfers to that for hard
But explicit calculations were performed for only one part Ofspheres, whereas kinetic equati@13 transfers to that of
it which is inhomogeneous of{” and local-time next to the SET(RET) theory. It is naturally to expect that results
other integral terms. In the stationary case, the integral term@@.4)—(8.6) should transfer to the well-known results of the
transfers to local-time ones. The explicit calculation of theseSET theory. This assertion really takes place. With the con-
terms becomes possible. Substituting one-particle distribudition (8.8) we have:
tion function f; (7.19 into the general expressiorn8.5—

(3.13 and taking into account new structure 1@.6): A—>agg§°(o-§), D;—0,
2= 951 ) 1Y (X3 O I (F, 02, 0{ 6P (x;0) 7
T+ ¢ O(F1,55:0), (8.1) Hi— A, D=0,
one obtains: Ho—ofgsios), E(0)=0,
J
Paﬁzpﬁaﬁ—xﬁuyﬁaﬁ—znsaﬁ, (8.2 Hy—m, K¥(0)=1,
1 =
Q=2 5T, 8.3 N =S 0gg50g), T(32)=—.
la
Then

whereS,; is the velocities shift tensor. Explicit expressions
for the transport coefficients, namely, buikkand shearyn

viscosities and thermal conductivily, read: ?n(lJr éwngggga(ag))
(1)
at— , (8.9
k= gnz(wm keT)V2H,, (8.9 42005t os)
A 348q 12
TSI B o S Bl
77:§K+ znkBT 1+ :L—S\/;nHl b, (8.5 4\/ﬂnzagg§"(a§) 2kgT
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p—nkgT (8.11)

2
1+ §7Tna'gggu(0'g)) ,

4
Kﬂ—nz\/TrkaTO'ggga(Ug), (8.12

9

3 5
7]—>§K+1—6

ko

kaT) R |

00930(05)

X (8.13

4 2
1+ Ewnagggq(ag)) ,

N 3kg +75 keT\¥2 1
T2m T 64l wm) o0 og)

X

(8.19

2 2
1+ gwnogggu(aar)) .

Relations(8.12—(8.14 obtained from(8.4)—(8.6) with tak-

ing into account(8.8), are identical to those from the SET
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En(1+2anA)+ 272039 o) Ase A%Hy(As)
8V2mnA\* + $ 0?54 o )As?e 4}
(8.16

5n(1+ £ 7nA)+ 27n203gSq o) Ase *SHy(As)
—

ab_,

b(®
8V2mnA\* + L 0%g54 o HAsPe A4S}
m 1/2
X m ' (817)
and
2
p—nkgT 1+§1-rnA>, (8.18
4
K—>§n2\/77kaTH3, (8.19

3 1 8
_ _ — (0)
7]—>5K+ 2nkBT 1+ 15\/7TnHl}b , (8.20

(RET) theory which are obtained by means of the standard

Chapman-Enskog procedure.

B. Square-well potential

A€|i:0, Asi=0, i:].,...,n*, AerlaﬁO,

(8.15

Aegj=0, As=0, j=2,...m*, As;=pe.

In this case, initial MSP[2.2) transfers into “square-well”
one of the DRS(RDRS theory. Definingo,1=0c, As;
=As=pBAe=Be, wheree is the square-well depth, and
taking into account8.15 one obtains:

A—03g8dod)+o®ga(a){e 25— 1},

1
N = 5 {055l og) +o%g5i o) e R (As)},

T
Hi— gl\ + crsggu((r—)Ase_As

Vo 1 1 1 5
s YT T A8y T A3y ~aAsp| D
7 SAS +3As +Se F(Z,As) ,

Hy—a305% 0g ) + 0?9507 )etSE(As),

J 3
H3—>7+GASF(§,AS),

D;— 0395 07 )Ase 4SH;(As),

D,— 02954 o )AsPeAs,

1 ©
Z(As)=e’s— EAS—ZJ dx x2\x2+ As,
0

3k 5 2kgT\ 2 4
)\—>—BK+—nkB< n:) [1+§\/;nHl]a(l>.

2m 4
(8.21)

Relations for transport coefficient®.19—(8.21) coincide
with those for DRSRDRS theory which were obtained by
means of the standard Chapman-Enskog procedure. Of
course, only the first approximation in gradients of the hy-
drodynamic parameters is implied everywhere.

C. Smooth long-range potential

Finally let us consider briefly the case, when

A€|i—>0, AO'”—)O, i:1,...,n*. n*—>00,
(8.22
Aegj—0, Aoj—0, j=1,...m*, m*—oo,
and an additional condition fg8.22):
AE” ,
" Aoy — ¢ (o), (8.233
AE”‘ ,
Ao _’d’t(o'rj) (8.23b

From the geometrical point of view8.22 and(8.23 corre-
spond to the case when MSH.2) is “merged” into some
smooth long-range potentidi, atr >o¢. It can be shown that
in this case

2
1+ = Wnaggga(og)

p—>nkBT 3

2
_§Tm2J drr3gsir) e/ (r)|. (8.24)

Expressions fok, n» and\ are completely similar t¢8.12)—
(8.14 of the SET(RET) theory with the only difference in
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TABLE I. Parameters for different theories and calculations for transport coeffigieBottom part
contains square displacement of results of SRET), MET (BH), DRS (RDRS theories and our theory
denoted by GDRSi.e., generalized DRSfrom MD simulation. The GDRS result is the closest to MD
simulation. The same parameters were used for calculation of other transport coefficients.

SET (RET) SIGMZ0=1.047
MET (BH) oo(T) = o[ 1.068+0.3837KgT/€,5) ]/[ 1.000+ 0.4293kg T/ €.,) ]
DRS (RDRS SIGMZ0=0.891, SIGMZM-=1.342, EZDRS- 0.929
GDRS SIGMZ0=0.940, SIGMZM=1.960, n,=3, m,=9, n*=2, m*=6
MD SET (RET) MED (BH) DRS (RDRS GDRS
0.0 0.01250 0.00794 0.000217 0.000206

the form forggﬂ(gg)_ In SET (RET), ggﬂ(gg) is a binary because a model interaction potential should approximate the
equilibrium correlation function of hard spheres on contactfeal potential more or less correctly. The first question ap-
whereas here it is the binary equilibrium correlation functionpearing here is how to represent an initial smooth interaction
of a system with the interaction potential of the hard spheregpotential by a multistep one. Let us consider one possible
type plus a long “tail” ¢,,r>0o,. Thus, one obtains the way of definition in which all distances between walls of the

final relations forp (8.24 and «, 7, and\ of the KMFT  same kind are equal, i.eXo;=const,i=1,... n*, Aoy
theory[19]. =const,j=1, ... m*. Then, to define the model interaction
potential one needs to set the position of the hard sphere wall
IX. NUMERICAL CALCULATIONS oo, the position of the most removed attractive watll,,,

First of all, let us remember that in the theory under con—(Uma":Urm*)’ the number of short lengths dividing repulsive

sideration we deal with the multistep potential of interaction@€a[ 00,0 mead Np, and the number of short lengths divid-
(2.2. If we have any information about regsmooth, of iNg attractive arefomean Omaxl My, Whereo meanis the mini-
coursg potential of interaction, we should deal with a large mum position of a real interaction potential. Now MSPI is
number of definition parameters. However, when interactiorbuilt. Numbers of repulsive* and attractiven* walls are
potential is known, the number of independent master pasniquely determined via numbers of dividing lengthsand
rameters is greatly reduced. That is the necessary conditiom, . In this representation of a real interaction potential by

TABLE Il. Transport coefficientss, », and\ calculated within different theories.

Bulk viscosity x (10~ *Pasec)

p, glent SET MET DRS GDRS
1.4327 0.33387 0.26739 0.43672 0.43371
1.4180 0.32270 0.25654 0.40946 0.40538
1.2777 0.22253 0.17126 0.25314 0.24708
1.1621 0.16222 0.12277 0.17466 0.16928
0.8017 0.05092 0.03919 0.05914 0.05653

Shear viscosityy (10 % Pa sec)

p, glcm? SET MET DRS GDRS
0.2970 0.27460 0.22428 028794 0.28953
0.2620 0.26633 0.21627 0.27144 0.27189
0.1734 0.19113 0.15248 0.17491 0.17248
0.1255 0.14577 0.11622 0.12627 0.12383
0.5790 0.06014 0.05210 0.05134 0.05087

Thermal conductivityh [W/(m K)]

T, K SET MET DRS GDRS

83.90 0.22107 0.18186 0.17078 0.16850
86.50 0.21468 0.17566 0.16187 0.15877
104.50 0.15622 0.12602 0.10790 0.10325
119.56 0.12080 0.09763 0.08029 0.07603

147.10 0.05254 0.04608 0.03484 0.03309
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FIG. 3. Transport coefficients for argof@) bulk viscosityx along the liquid-vapor curvec-axis is in units ofp(g/cnt), namely: 1.4327,
1.4180, 1.1621, and 0.8017 for 1, 2, 3, and 4, respectivlyshear viscositys. x-axis is in units of[ p(g/cn?),T(K)], namely:p;
=1.43,T,=83.9, p,=1.28, T,=104.5, p3=1.16, T3=119.56, andp,=0.802, T,=147.1.(c) n=n(T) at p=pe; (d) n=n(p) at T
=139.7 K. Experimental data plotted {n) and(d) are taken froni28].

MSPI, one realizes original entwining of model potential First, one calculates the transport coefficients along the
around the real one. gas-liquid saturation curve. There were five points of calcu-
The second question is the problem of optimal dividing,lation (p;=mn;, T;, i=1,...,5)along the curve of satura-
i.e., how to define the parameterg, oyax, Ny, My SO that  tion for which such a transport coefficient as the shear vis-

fair results are obtained already in the first approximationcosity # is known from the MD simulation19]. MSPI
We tried to solve this problem numerically. parameters n,, m,, SIGMZO0=o0¢/0o;, SIGMZM
Numerical computations of transport coefficients were= o,,,/0p were defined from the minimum of square dis-
carried out for argon with the Lennard-Jones potential placement of the theory from corresponding MD results. Pa-
rameters of the DR$RDRS theory were defined in much
o\ oy the same way: SIGMZ8oy/0;, SIGMZM=d/0oy,
(T _(T EDRS=¢€/€ 3, as well as for SETRET) theory: SIGMZ0
=og/o . Table | shows the results. Table Il shows all re-
whereo;=3.405A, €, ;/kg=119.8 K. sults of calculation of transport coefficients by different theo-
The starting point in the numerical analysis of transporti€s. Their comparison with experimental data and MD simu-

coefficients of our theory are relatior®.4)—(8.6) with addi-  lations are presented in Figs. 3 and 4. Itis clearly seen that
tional equation for binary equilibrium correlation function GDRS results practically coincide with the experimental data

g%% of a system with potential in a form of multistep func- N @ wide range of densities and temperatures.
tion. In our calculation we used fag3® the following ap-

6

Drear= PLi=4€Ly ; (9.1

X. CONCLUDING REMARKS

proximation:
Let us discuss areas of application of kinetic equation
e 1y — (0) _
924r) =gz (rexp— Bo(r)}, (928 (2,13, We should remember conditions of general derivation
of this equation within the frame of Bogolubov-Zubarev ap-
d(r)=o(r), (9.2D  proach[29,30. The specific demand to the geometry of a

potential and to the density of a system is that the mean free
pathl; should be greatly smaller than a minimal clearance
between the walld\o. Hence, one should expect that larger
distance between walls and higher density give smaller error

Whereg(zo)(r) is the binary equilibrium correlation function
of hard spheres of diametert,. Its analytical expression is
well known[27].
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FIG. 4. Thermal conductivity. of argon.(a) MD simulations and different theories calculations in the same points as in (Bg.(B)
N=\(T) at p=2p,,, different theories are compared with experimental dataA =\ (T) at p=2p.; (d) A=A(p) at T=298 K. All
experimental data plotted in this figure are taken fi@8].

in the kinetic equation. This error is introduced by the limit- distance between wallg;y.~20y is the location of the most
ing condition for interaction timgr|—+0 [30]. On the removed attractive wall. It is well known from the theory of
other hand, next to the theory error there is an error causegrefied gases[1,31] that the mean free pathl;
by a deviation of the multistep potential of interaction from a~1M2mnos,. In dense gases it decreases in the first ap-
real one. Real potential is smooth and the error is smalleproximation bygSY o) times wheregS{ o) is the contact
when the clearance between walls is smaller. In the limit,5,e of binary equilibrium correlation functid23]. Thus,
(8.22 this error is the smallest. One can observe that thes?mllenazge“(o+) Introducing the dimensionless den-
two types of errors have opposite tendencies. So, to apply thg, ' _ 1 ge2 s 0r

; L . . X y A= 3mnoy, one obtains:
obtained kinetic equation to systems with real smooth inter-

particle interaction potential in view of a geometry of MSPI A 1
one should find a compromise solution. First of all, MSPI _‘T>—:7. (10.2)
should approximate real potential, better of worse. At the 0o 2427Ag5Yoy)

same time the conditioh <A o must be obeyed. This raises

the question of optimal dividing of a real potential of inter- For A=0.25 andg5Y o, )=2.5 one obtaingy~1/25. As far
action into a multistep one. Density decreasing makes imposs initial preconditions of the theory are not obeyed, then in
sible to obtain the Boltzmann analog from the consideredhe limit (8.22 the theory error is maximal. However, kinetic
equation in the limin— 0. Let us evaluate numerically. Sup- equation transfers then into the equation of the kinetic mean-
poseay is the position of a hard spherag is the minimal  field theory[19].
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